作者:禅与计算机程序设计艺术
1.简介
(1)研究背景
随着人工智能领域的发展,越来越多的研究人员正在尝试利用机器学习方法解决实际问题。但是,如何选择适合任务的机器学习模型、训练数据集大小、超参数设置等仍然是一个关键难题。因此,如何有效地评估机器学习模型的质量、提升模型的泛化能力和效率,成为一个重要课题。
传统的评价机器学习模型质量的方法主要有三种:
-
交叉验证法(cross validation method):将数据集划分成K份,分别作为训练集和测试集进行训练和测试。在每一次迭代中,测试集中的样本被用作验证集,其他的K-1个训练集组成的集合用于训练模型。最后,通过对比所有模型的预测结果,确定最佳模型。这种方法简单易行,但计算开销较大。
-
概率图模型(probabilistic graphical model):借助概率图模型,可以更加直观地表示模型之间的依赖关系,从而更好地判断模型之间的关系和差异。通过将各模型的输出定义为节点,并定义其之间的依赖关系,可以获得一个概率模型。通过模型参数的优化,可以得到最优模型。这种方法对于多变量情况效果不佳。
-
调参搜索法(hyperparameter tuning method):在训练模型之前,系统会自动或手动选择一些参数的值,如神经网络的层数、神经元数量、学习率、正则化系数等。通过遍历这些参数的不同组合,选择出性能最好的模型。这种方法能够快速找出模型的参数最优值,但是需要对模型架构和超参数有一定了解。
针对以上三个方法,统计机器语言处理(stat