作者:禅与计算机程序设计艺术
1.简介
TensorFlow是一个开源的机器学习库,专注于在机器学习领域进行高效率的计算,其深度学习组件可以运行在多种硬件设备上。TensorFlow框架最初由Google研究院的工程师开发,目前由TensorFlow团队维护并开发。TensorFlow由Python语言编写而成,拥有独特的编程模型和语法,它提供了易用的接口使得用户能够快速构建、训练和部署神经网络模型。
本系列文章将帮助读者了解如何基于TensorFlow2.x开发深度学习平台,包括构建深度学习模型、训练和验证模型、部署模型到生产环境中、实现模型的线上监控、实时预测等流程,并对整个过程中的关键环节进行详尽的讲解,使读者能够利用TensorFlow2.x构建自己的深度学习系统,更好地解决实际问题。
2. 概览
TensorFlow2.0最重要的改进之处就是其API设计变革,它从旧有的基于静态图的模式转向了动态图的模式,在编译时就执行所有计算图的优化,有效提升了运行速度。其主要优点如下:
- 可移植性:TensorFlow具有良好的可移植性,能够兼容各种平台(Linux、macOS、Windows);
- 支持多种硬件:TensorFlow支持多种硬件设备(CPU、GPU、TPU),能够运行在各类服务器和移动端设备上;
- 高性能:TensorFlow在训练和推理过程中都具有极高的性能,在处理复杂的数据时表现出色;
- 模型自定义能力强:TensorFlow支持多种模型结构,包括卷积神经网络、循环神经网络等,并且可以方便地自定义模型结构。