作者:禅与计算机程序设计艺术
1.简介
随着人工智能领域的火热,深度学习在图像识别、文本分析等领域的应用越来越广泛,然而在实际生产环境中,深度学习模型占用大量的计算资源,且运行速度也十分缓慢。因此,如何高效地压缩深度学习模型,降低内存消耗和模型推理时间成为一个重要课题。为了解决这一问题,近年来一些研究机构和企业纷纷投入精力开发端到端量化模型压缩技术,基于参数化量化、蒸馏和剪枝等方法,将深度学习模型量化后进行压缩,从而达到优化模型大小和加速推理过程的效果。然而,目前并没有统一的量化模型压缩方案能够同时兼顾高效率和准确性。
因此,本文根据最新的国际研究成果,综合评述了深度学习模型压缩技术的主要发展趋势和策略,并对现有的端到端量化模型压缩方案做了一个比较分析,最后总结出一个关于量化模型压缩的新框架,即将高效率压缩与准确性的压缩能力统一起来,称之为“无损压缩”。通过将无损压缩的方法有效地应用于端到端量化模型压缩,我们期望能够取得更优秀的压缩性能,进一步提升深度学习模型在实际生产中的效果。
2.基本概念术语说明
在正式介绍端到端量化模型压缩之前,首先需要明确相关术语,包括“深度学习”(deep learning)、“模型压缩”(model compression)、“量化”(quantization)、“定点数”(fixed-point number)。其中,“深度学习”是指深度神经网络(DNNs)或其他机器学习技术。“模型压缩”是指通过减少模型参数数量或缩小模型体积,减轻其存储空间和计算负担的方式。“量化”是指通过按比例缩放模型参数,并舍弃不必要的浮点误差,从而实现模型的快速推理和高效运算。“定点数”是指一种计算机内部表示法,它采用一定数量