作者:禅与计算机程序设计艺术
1.背景介绍
TensorFlow是一个开源机器学习框架,由Google在2015年9月8日发布。它是一个功能强大的工具,用于构建、训练和部署复杂的神经网络模型。本系列文章是基于TensorFlow 2.0版本,详细阐述了TensorFlow的基本知识、应用场景及其最新特性。本文将从基础入门、高级技巧两个角度对TensorFlow进行详细介绍,并结合应用案例分享一些实操经验。
2.核心概念与联系
为了更好地理解和使用TensorFlow,需要了解它的基础概念和主要功能模块。下面我们先介绍一些核心概念和概念之间的关系。
- 图(Graph):在TensorFlow中,所有计算都被封装成一个图(graph)。每个图可以包括多个节点(node)、边(edge)和属性(attribute),这些节点之间通过边相互连接。一个图可以作为一个整体被执行或求值。图可以用来表示神经网络结构和数据流,也可以用来表示其他形式的数据结构和计算过程。
- 张量(Tensors):张量是一个多维数组,可以用来表示向量、矩阵或者更高阶的张量。张量可以存储数值或者是符号变量,可以当作输入数据,也可以用来保存中间结果。
- 操作(Ops):操作(ops)是TensorFlow中的基本运算单元,可以接受张量作为输入参数,产生张量作为输出结果。TensorFlow提供了丰富的API,可以通过各种操作组合构造出不同的图。
- 会话(Session):