TensorFlow 2.0:从入门到进阶 一站式掌握最新版 TensorFlow

本文详细介绍了TensorFlow 2.0的核心概念,包括图、张量、操作、会话、节点和设备。重点讲解了激活函数如sigmoid、tanh、ReLU、Leaky ReLU、ELU和softmax,以及损失函数如MSE、交叉熵、套索损失和Focal Loss。此外,还涵盖了优化器SGD、Adagrad和Adam的工作原理。适合于想要深入理解TensorFlow和神经网络的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

TensorFlow是一个开源机器学习框架,由Google在2015年9月8日发布。它是一个功能强大的工具,用于构建、训练和部署复杂的神经网络模型。本系列文章是基于TensorFlow 2.0版本,详细阐述了TensorFlow的基本知识、应用场景及其最新特性。本文将从基础入门、高级技巧两个角度对TensorFlow进行详细介绍,并结合应用案例分享一些实操经验。

2.核心概念与联系

为了更好地理解和使用TensorFlow,需要了解它的基础概念和主要功能模块。下面我们先介绍一些核心概念和概念之间的关系。

  • 图(Graph):在TensorFlow中,所有计算都被封装成一个图(graph)。每个图可以包括多个节点(node)、边(edge)和属性(attribute),这些节点之间通过边相互连接。一个图可以作为一个整体被执行或求值。图可以用来表示神经网络结构和数据流,也可以用来表示其他形式的数据结构和计算过程。
  • 张量(Tensors):张量是一个多维数组,可以用来表示向量、矩阵或者更高阶的张量。张量可以存储数值或者是符号变量,可以当作输入数据,也可以用来保存中间结果。
  • 操作(Ops):操作(ops)是TensorFlow中的基本运算单元,可以接受张量作为输入参数,产生张量作为输出结果。TensorFlow提供了丰富的API,可以通过各种操作组合构造出不同的图。
  • 会话(Session)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值