1.背景介绍
传统机器学习的过程中,需要将训练数据、测试数据一起送入模型进行训练。在实际生产中,这样的数据量往往无法满足需求。于是,研究者们便提出了迁移学习方法。迁移学习方法可以帮助计算机在新任务中利用老任务的知识,从而提升泛化能力。本文将会以迁移学习的方法,对迁移学习的原理及其应用进行探讨。
2.核心概念与联系
迁移学习是机器学习的一个重要分支。它通过借鉴已有的经验,用已有数据的知识或技能来帮助模型解决新的任务。与其他机器学习算法相比,迁移学习方法更关注于如何利用已有知识进行学习,而不是开发出一个全新的模型。
迁移学习的两个主要思想是:
- 利用预训练模型(Pre-trained Model);
- 使用特征共享(Feature Sharing)。
具体来说,
预训练模型指的是利用大量的标注数据训练好的机器学习模型,这些模型具有一些已经学习到的有用的特征。
特征共享则是指利用预训练模型的特征作为输入,再加上少量样本数据,将它们用来训练模型。这样做的目的是利用预训练模型的学习成果来解决新问题。
从效果上看,迁移学习的优点是减少训练数据,节约时间,提高泛化能力。缺点也是显而易见的,过度依赖预训练模型的表现可能会造成过拟合。
在迁移学习方法中,还有许多其他的创新性研究,例如基于深度学习的迁移学习方法,通过网络结构把预训练模型的参数迁移到目标领域。同时,也有一些方法根据已有的监督学习任务,重新设计损失函数,以适应迁移学习中的样本不平衡等问题。