1.背景介绍
随着深度学习技术的不断发展,深度学习模型在计算能力和性能方面取得了显著的进展。然而,这些模型的复杂性也带来了更高的计算成本和存储需求。因此,模型压缩成为了一个关键的研究方向。模型压缩的主要目标是将大型模型压缩为更小的模型,同时保持模型的性能和准确性。
模型压缩可以分为两类:预训练时压缩和训练时压缩。预训练时压缩通常包括权重裁剪、权重稀疏化和知识蒸馏等方法。训练时压缩通常包括剪枝、剪梳等方法。在本文中,我们将重点关注知识蒸馏和剪枝两种方法。
2.核心概念与联系
2.1 知识蒸馏
知识蒸馏是一种将大型模型压缩为小型模型的方法,通过训练一个小型模型(学生模型)来学习大型模型(老师模型)的知识。知识蒸馏的核心思想是大型模型具有更多的知识,小型模型通过学习大型模型的输出来获取知识。
2.2 剪枝
剪枝是一种通过消除不重要权重的方法来压缩模型的方法。剪枝的核心思想是在模型训练过程中,大部分权重对模型输出的影响较小,可以被消除,只保留影响模型输出较大的权重。