1.背景介绍
自从2017年的“Attention Is All You Need”一文发表以来,Transformer模型就成为了人工智能领域的重要突破,尤其是自然语言处理(NLP)方面。这篇文章将深入探讨Transformer模型的实战与进阶,涵盖其核心概念、算法原理、具体操作步骤以及数学模型公式。
1.1 背景
在2012年,Hinton等人的“Deep Learning”一文催生了深度学习的大爆发。随后,RNN、LSTM、GRU等序列模型成为NLP的主流。然而,这些模型存在着两个主要问题:
- 计算效率低,难以训练大规模模型。
- 长距离依赖关系难以捕捉。
2017年,Vaswani等人提出了Transformer模型,解决了上述问题。Transformer模型的核心在于自注意力机制,它可以有效地捕捉长距离依赖关系,并且具有较高的计算效率。
1.2 核心概念与联系
1.2.1 Transformer模型的基本结构
Transformer模型由以下两个主要组成部分构成:
- 自注意力机制(Self-Attention):用于计算输入序列中每个词汇之间的关系。
- 位置编码(Positional Encoding):用于保留输入序列中的位置信息。