文章目录
生成对抗网络(GAN)的数学原理与实现
1. 背景介绍
生成对抗网络(Generative Adversarial Networks, GAN)是近年来机器学习领域最热门的研究方向之一。
GAN由Ian Goodfellow等人在2014年提出,它通过一种全新的训练方式,使得生成模型能够学习数据分布,生成与真实数据难以区分的样本。GAN的核心思想是:
通过两个相互对抗的网络模型 - 生成器(Generator)和判别器(Discriminator) - 进行博弈,最终达到生成器生成逼真样本的目的。
2. 核心概念与联系
GAN的核心概念包括:
- 生成器(Generator): 负责生成与真实数据分布难以区分的样本。生成器会不断优化自身参数,试图欺骗判别器。
- 判别器(Discriminator): 负责判断输入样本是真实样本还是生成样本。判别器会不断优化自身参数,试图识别生成器生成的样本。
- 对抗训练: 生成器和判别器相互对抗,通过不断优化自身参数,最终达到生成器生成逼真样本的目的。
生成器和判别器的关系可以类比为一个"捉迷藏"的游戏,生成器试图逃脱被判别器识破,而判别器则试图识破生成器的伪造。通过这种对抗训练,GAN最终能够学习数据