策略梯度算法REINFORCE
1.背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它研究如何基于环境反馈来学习一个最优策略,以最大化长期累积奖励。与监督学习不同,强化学习没有给定的输入-输出样本对,而是通过与环境的交互来学习。
1.2 策略梯度算法的作用
在强化学习中,策略梯度算法是解决连续控制问题的一种重要方法。它直接对策略进行参数化,通过梯度上升的方式来优化策略参数,从而学习到一个可以最大化期望回报的最优策略。
1.3 REINFORCE算法简介
REINFORCE算法是最早也是最基础的策略梯度算法之一。它通过采样得到的回报,利用策略梯度的方法来更新策略参数,从而使策略朝着提高期望回报的方向优化。
2.核心概念与联系
2.1 马尔可夫决策过程(MDP)
马尔可夫决策过程是强化学习问题的数学模型,由一组状态(States)、一组动作(Actions)、状态转移概率(State Transition Probabilities)、回报函数(Reward Function)和折扣因子(Discount Factor)组成。
2.2 策略(Policy)
策略是一个从状态到动作的映射函数,它定义了在每个状态