多智能体强化学习:合作与竞争的博弈

本文介绍了多智能体强化学习(MARL)的基本概念,包括马尔可夫博弈、纳什均衡和合作竞争。讨论了核心算法如Q-learning和策略梯度,并提供了数学模型和公式示例。此外,还涵盖了实际应用,如机器人协作和自动驾驶,以及未来发展趋势和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

多智能体强化学习(MARL)是人工智能领域中一个充满活力和挑战性的分支,它研究多个智能体如何在复杂环境中通过相互协作或竞争来学习和执行任务。相比于单智能体强化学习,MARL 引入了智能体之间的交互,使得问题变得更加复杂,但也更加贴近现实世界中的诸多场景,例如:

  • 机器人团队协作: 多个机器人需要协同完成复杂的装配任务,例如组装汽车、搭建桥梁等。
  • 自动驾驶: 自动驾驶车辆需要在道路上与其他车辆进行交互,并做出安全的驾驶决策。
  • 游戏: 在电子竞技游戏中,多个玩家需要组成团队进行对抗,并制定获胜策略。
  • 金融交易: 多个交易者在市场中进行交易,并通过竞争获得最大收益。

这些场景都涉及到多个智能体之间的复杂交互,需要他们能够学习和适应彼此的行为,并最终实现共同的目标或最大化自身利益。

2. 核心概念与联系

2.1. 马尔可夫博弈

马尔可夫博弈是 MARL 的理论基础,它描述了多个智能体在环境中进行交互的过程。一个马尔可夫博弈由以下要素组成:

  • 状态空间: 描述环境所有可能状态的集合。
  • 动作空间: 每个智能体可以执行的所有动作的集合。
  • 状态转移函数: 描述在当前状态下,智能体执行某个动作后,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值