1. 背景介绍
1.1 人工智能与数据隐私的冲突
近年来,人工智能(AI)技术取得了显著的进展,并在各个领域得到了广泛的应用。然而,AI的发展也带来了数据隐私问题。传统的AI模型训练需要大量的集中式数据,这可能导致个人隐私泄露和数据滥用。
1.2 预训练模型的兴起
预训练模型(Pre-trained Models)是一种新的AI范式,它在大型数据集上进行预训练,然后在特定任务上进行微调。预训练模型可以显著提高模型的性能,并减少对特定任务数据的需求。
1.3 联邦学习的出现
联邦学习(Federated Learning)是一种分布式机器学习技术,它允许在不共享数据的情况下进行模型训练。每个设备在本地训练模型,并将模型更新发送到中央服务器进行聚合。这种方式可以保护数据隐私,并实现跨设备的协作学习。
2. 核心概念与联系
2.1 预训练模型
预训练模型通常使用Transformer等深度学习架构,并在大型文本或图像数据集上进行训练。预训练模型可以学习丰富的语言或图像特征,并在下游任务中进行微调,例如文本分类、机器翻译和图像识别。
2.2 联邦学习
联邦学习的核心思想是在本地设备上训练模型,并仅共享模型更新。常见的联邦学习算法包括FedAvg、FedProx和FedOpt。联邦学习可以保护数据隐私,并实现跨设备的协作学习。