SVM分类与回归的基本实现
1.背景介绍
支持向量机(Support Vector Machine,简称SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM最初由Vladimir Vapnik和他的同事在20世纪90年代提出,旨在解决二分类问题。随着研究的深入,SVM逐渐扩展到多分类和回归问题,并在许多实际应用中表现出色。
SVM的核心思想是通过寻找一个最优超平面,将数据集中的不同类别分开。这个超平面不仅要最大化分类间隔,还要尽量减少分类错误。SVM的优势在于其强大的泛化能力和对高维数据的处理能力,特别适用于小样本、非线性和高维度的数据集。
2.核心概念与联系
2.1 支持向量
支持向量是指位于决策边界上的数据点,这些点对分类结果有重要影响。支持向量决定了最优超平面的位置和方向。
2.2 超平面
在二维空间中,超平面是一个直线;在三维空间中,超平面是一个平面;在更高维度的空间中,超平面是一个超平面。SVM通过寻找一个最优超平面,将不同类别的数据点分开。
2.3 间隔
间隔是指从超平面到最近的支持向量的距离。SVM的目标是最大化这个间隔,以提高模型的泛化能力。
2.4 核函数
核函数是SVM处理非线性问题的关键。通过核函数,SVM可以在高维空间中找到一个线性可分的超平面,从而解决原始空间中的非线性问题。常见的核函数包括线性核、多项式核、高斯核(RBF核)等。