深度强化学习(Deep Reinforcement Learning) - 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:深度强化学习,强化学习,神经网络,智能代理,决策制定
1. 背景介绍
1.1 问题的由来
随着人工智能领域的发展,解决实际问题时需要系统具备更高级别的自主能力,特别是在动态环境中进行适应性决策。传统的基于规则的系统往往难以处理复杂的非线性关系及不确定因素,而基于统计的学习方法如机器学习在面对这类问题时,受限于数据量不足或特征选择困难等问题。
1.2 研究现状
近年来,深度强化学习(DRL)作为强化学习(RL)的一个分支,结合了深度学习的强大表示能力与传统强化学习的控制策略优化思想,在多智能体系统、游戏对战、机器人控制、自动驾驶等领域取得了显著进展。DRL通过利用深度神经网络将状态空间和动作空间映射到高维特征空间,使得学习器能够从复杂环境中提取关键信息,并作出高效决策。
1.3 研究意义
深度强化学习对于推动人工智能向更广泛的应用场景发展具有重要意义。它不仅提高了学习效率,减少了人为设定的限制条件,还增强了系统的通用性和可移植性。此外,DRL为研究者提供了新的视角去探索复杂系统的交互特性,有望在未来促进更多领域的技术创新和发展。