零样本学习 (Zero-Shot Learning):突破传统机器学习的界限
关键词:零样本学习、迁移学习、语义嵌入、属性学习、生成模型
文章目录
1. 背景介绍
1.1 问题的由来
在传统的机器学习范式中,模型的训练和测试通常基于同一分布的数据集。这种方法要求训练数据包含所有可能的类别,并且每个类别都有足够多的样本。然而,在现实世界中,我们经常面临需要识别或分类全新类别的情况,这些类别在训练数据中可能完全没有出现过。这就引出了一个关键问题:
如何使机器学习模型能够识别和理解它从未见过的类别?
零样本学习(Zero-Shot Learning,简称ZSL)正是为了解决这一挑战而提出的。它旨在训练一个能够识别未知类别的模型,即使在训练过程中没有见过这些类别的任何样本。这种学习范式打破了传统机器学习的界限,为人工智能系统提供了更强的泛化能力和适应性。
1.2 研究现状
零样本学习作为机器学习和人工智能领域的前沿研究方向,近年来受到了广泛关注。目前的研究主要集中在以下几个方面:
-
语义嵌入方法:通过将视觉特征和语义描述映射到同一空间来实现零样本识别。
-