零样本学习 (Zero-Shot Learning):突破传统机器学习的界限

零样本学习 (Zero-Shot Learning):突破传统机器学习的界限

关键词:零样本学习、迁移学习、语义嵌入、属性学习、生成模型

1. 背景介绍

1.1 问题的由来

在传统的机器学习范式中,模型的训练和测试通常基于同一分布的数据集。这种方法要求训练数据包含所有可能的类别,并且每个类别都有足够多的样本。然而,在现实世界中,我们经常面临需要识别或分类全新类别的情况,这些类别在训练数据中可能完全没有出现过。这就引出了一个关键问题:

如何使机器学习模型能够识别和理解它从未见过的类别?

零样本学习(Zero-Shot Learning,简称ZSL)正是为了解决这一挑战而提出的。它旨在训练一个能够识别未知类别的模型,即使在训练过程中没有见过这些类别的任何样本。这种学习范式打破了传统机器学习的界限,为人工智能系统提供了更强的泛化能力和适应性。

1.2 研究现状

零样本学习作为机器学习和人工智能领域的前沿研究方向,近年来受到了广泛关注。目前的研究主要集中在以下几个方面:

  1. 语义嵌入方法:通过将视觉特征和语义描述映射到同一空间来实现零样本识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值