大语言模型应用指南:编码与无损压缩
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:大语言模型,编码,无损压缩,高效表示,模型压缩,信息理论
1. 背景介绍
1.1 问题的由来
随着人工智能技术的飞速发展,大语言模型(Large Language Models, LLMs)如GPT-3、LaMDA等逐渐成为研究热点。然而,这些模型规模庞大、参数数量惊人,导致其训练和推理成本高昂,存储和部署也面临巨大挑战。因此,如何高效地编码和压缩大语言模型,成为当前人工智能领域亟待解决的问题。
1.2 研究现状
近年来,研究人员针对大语言模型的编码与压缩提出了多种方法,主要包括以下几类:
- 参数共享(Parameter Sharing):通过共享模型参数,减少模型参数数量,降低存储和计算成本。
- 知识蒸馏(Knowledge Distillation):将大模型的知识迁移到小模型中,实现模型压缩和快速推理。
- 剪枝(Pruning):移除模型中的冗余参数,降低模型复杂度。
- 量化(Quantization):将模型参数的精度从浮点数降低到整数,减少存储和计算资源消耗。
- 稀疏化(Sparse Representati