Transformer大模型实战 抽象式摘要任务

Transformer大模型实战:抽象式摘要任务

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

摘要是对长文本的精炼概括,能够帮助用户快速获取文本的核心信息。在信息爆炸的今天,高效获取和处理信息变得越来越重要。然而,人工撰写摘要耗时费力,且难以保证摘要的准确性和客观性。因此,自动生成摘要成为了自然语言处理(NLP)领域的一个重要研究方向。

传统的摘要生成方法主要基于规则和模板,如ROBUST、SUMMAC等,但这些方法在处理复杂文本和抽象内容时效果不佳。近年来,随着深度学习技术的发展,基于深度学习的摘要生成方法逐渐成为主流,其中Transformer模型以其优越的性能在摘要任务中脱颖而出。

1.2 研究现状

目前,基于Transformer的摘要生成方法主要分为两种类型:抽取式摘要和生成式摘要。

  • 抽取式摘要:从原文中提取关键句子或短语,组合成摘要。典型方法包括TextRank、TF-IDF等。

  • 生成式摘要:利用深度学习模型自动生成摘要文本。典型方法包括序列到序列模型(Seq2Seq)、注意力机制等。

1.3 研究意义

自动摘要技术在新闻、翻译、机器阅读理解等领域具有广泛的应用前景。通过自动生成摘要,可以提高信息获取效率,降低人力成本,并促进知识的传播

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值