Transformer大模型实战:抽象式摘要任务
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
摘要是对长文本的精炼概括,能够帮助用户快速获取文本的核心信息。在信息爆炸的今天,高效获取和处理信息变得越来越重要。然而,人工撰写摘要耗时费力,且难以保证摘要的准确性和客观性。因此,自动生成摘要成为了自然语言处理(NLP)领域的一个重要研究方向。
传统的摘要生成方法主要基于规则和模板,如ROBUST、SUMMAC等,但这些方法在处理复杂文本和抽象内容时效果不佳。近年来,随着深度学习技术的发展,基于深度学习的摘要生成方法逐渐成为主流,其中Transformer模型以其优越的性能在摘要任务中脱颖而出。
1.2 研究现状
目前,基于Transformer的摘要生成方法主要分为两种类型:抽取式摘要和生成式摘要。
抽取式摘要:从原文中提取关键句子或短语,组合成摘要。典型方法包括TextRank、TF-IDF等。
生成式摘要:利用深度学习模型自动生成摘要文本。典型方法包括序列到序列模型(Seq2Seq)、注意力机制等。
1.3 研究意义
自动摘要技术在新闻、翻译、机器阅读理解等领域具有广泛的应用前景。通过自动生成摘要,可以提高信息获取效率,降低人力成本,并促进知识的传播