从DALL·E到Stable Diffusion:AIGC图像生成演进史

从DALL·E到Stable Diffusion:AIGC图像生成演进史

关键词:AIGC、扩散模型、Transformer、多模态学习、DALL·E、Stable Diffusion、生成对抗网络(GAN)

摘要:本文系统梳理了AIGC(生成式人工智能)图像生成技术从DALL·E到Stable Diffusion的演进路径,深度解析关键技术突破与底层原理。通过对比两代代表性模型的架构设计、算法逻辑和应用场景,揭示多模态理解、扩散模型优化等核心技术如何推动图像生成从“可用”走向“高质量可控”。文章涵盖数学模型推导、代码实战案例及未来趋势展望,为开发者和研究者提供技术演进的全景视角。


1. 背景介绍

1.1 目的和范围

AIGC图像生成技术的爆发式发展,正在重塑创意产业、设计领域和人机交互模式。本文聚焦2021-2022年的关键技术跃迁——从OpenAI的DALL·E到Stability AI的Stable Diffusion,系统解析:

  • 技术演进的底层驱动力(如多模态对齐、计算效率优化);
  • 核心模型架构的迭代逻辑(Transformer→扩散模型);
  • 从“文本到图像”生成到“可控高质量生成”的能力升级;
  • 工业级应用落地的关键突破点。

1.2 预期读者

  • AI算法工程师(关注模型优化与落地);
  • 计算机视觉/自然语言处理研究者(探索多模态生成前沿);
  • 创意产业从业者(理解AIGC工具的技术边界);
  • 技术爱好者(希望系统掌握图像生成技术脉络)。

1.3 文档结构概述

本文按“技术演进→原理解析→实战应用→未来展望”的逻辑展开:

  • 第2章梳理核心概念与技术脉络;
  • 第3-4章深度解析DALL·E与Stable Diffusion的算法原理及数学模型;
  • 第5章提供Stable Diffusion的实战代码案例;
  • 第6章总结典型应用场景;
  • 第7章推荐学习资源与工具;
  • 第8章展望未来趋势与挑战。

1.4 术语表

1.4.1 核心术语定义
  • AIGC(AI-Generated Content):通过生成式AI模型自动创建文本、图像、视频等内容的技术。
  • 扩散模型(Diffusion Model):通过逐步添加噪声(正向过程)和学习去噪(逆向过程)生成数据的生成式模型。
  • Transformer:基于自注意力机制的神经网络架构,广泛用于自然语言处理(NLP)和多模态任务。
  • CLIP(Contrastive Language-Image Pretraining):OpenAI提出的多模态模型,通过对比学习对齐文本与图像的语义空间。
  • VAE(变分自编码器):用于将高维数据(如图像)压缩到低维潜在空间的生成模型。
1.4.2 相关概念解释
  • 多模态学习:同时处理文本、图像、音频等多种模态数据,建立跨模态语义关联的技术。
  • 潜在空间(Latent Space):高维数据经压缩后的低维表示空间,可降低计算复杂度并保留关键特征。
  • 指导生成(Guided Generation):通过文本提示或条件信息引导生成过程,控制输出内容的语义和风格。

2. 核心概念与联系:技术演进的底层逻辑

AIGC图像生成的技术演进可分为三个阶段(图2-1),核心驱动力是多模态理解能力提升生成效率优化

2.1 技术演进脉络

graph LR
    A[早期探索:GAN主导] --> B[多模态突破:DALL·E]
    B --> C[效率革命:Stable Diffusion]
    style A fill:#f9f,stroke:#333
    style B fill:#9f9,stroke:#333
    style C fill:#99f,stroke:#333

图2-1 AIGC图像生成技术演进脉络

2.1.1 早期探索(2014-2020):GAN的主导与局限

生成对抗网络(GAN)是AIGC的起点(Goodfellow et al., 2014)。GAN通过生成器(Generator)与判别器(Discriminator)的对抗训练,学习真实数据分布。典型模型如DCGAN(2015)、StyleGAN(2018)可生成高分辨率人脸、场景图像,但存在三大局限:

  • 训练不稳定:生成器与判别器的梯度博弈易导致模式崩溃(Mode Collapse);
  • 无控制生成:难以通过文本等条件精确控制生成内容;
  • 语义对齐弱:缺乏多模态理解能力,无法关联文本与图像的深层语义。
2.1.2 多模态突破(2021):DALL·E的“文本-图像”对齐革命

OpenAI于2021年发布的DALL·E(基于120亿参数的Transformer)首次实现“文本到图像”的精准生成。其核心创新是多模态语义对齐

  • 预训练CLIP模型(Radford et al., 2021)建立文本与图像的统一语义空间;
  • 用CLIP的对齐能力指导Transformer生成符合文本描述的图像。

DALL·E突破了GAN的“无控制”限制,但仍存在缺陷:

  • 计算成本高:直接在像素空间生成(256×256图像),内存与算力需求巨大;
  • 生成效率低:自回归生成(逐像素预测)导致速度慢;
  • 分辨率受限:受限于Transformer的序列长度,仅支持小尺寸图像。
2.1.3 效率革命(2022):Stable Diffusion的潜在空间扩散

Stable Diffusion(Rombach et al., 2022)通过潜在空间扩散+多模态条件实现了“高质量、高效率、高可控”的图像生成。其核心创新是:

  • 用VAE将图像压缩到低维潜在空间(如64×64→4×4×8的潜在表示),降低计算复杂度;
  • 结合CLIP文本编码器提供条件指导,实现细粒度控制;
  • 扩散模型的并行去噪过程替代自回归生成,提升速度。

2.2 关键技术联系

DALL·E与Stable Diffusion的技术联系可归纳为“继承+突破”(图2-2):

  • 多模态对齐:均依赖CLIP建立文本与图像的语义关联;
  • 条件生成:通过文本提示控制生成内容;
  • 效率突破:Stable Diffusion通过潜在空间扩散解决了DALL·E的高成本问题。
graph LR
    A[DALL·E] -->|继承| B[CLIP多模态对齐]
    A -->|突破| C[自回归生成]
    D[Stable Diffusion] -->|继承| B
    D -->|突破| E[潜在空间扩散]
    style A fill:#9f9,stroke:#333
    style D fill:#99f,stroke:#333

图2-2 DALL·E与Stable Diffusion的技术联系


3. 核心算法原理:从Transformer到扩散模型

3.1 DALL·E:基于多模态Transformer的生成逻辑

DALL·E的全称是“DALL·E: Zero-Shot Text-to-Image Generation”,其架构(图3-1)由三部分组成:

  • 文本编码器:将输入文本转换为嵌入向量;
  • 图像编码器:将图像转换为256×256的像素序列(每个像素用8位颜色表示,共3×256×256=196608维);
  • 多模态Transformer:同时处理文本嵌入与图像像素序列,预测下一个像素值。
3.1.1 多模态输入设计

DALL·E将文本与图像统一为序列输入(图3-2):

  • 文本经分词后转换为长度为n的token序列(如“a red cat”→[5, 12, 3]);
  • 图像被分割为32×32的patch(每个patch对应8×8像素),共1024个patch,每个patch用256维嵌入表示;
  • 最终输入序列为:[文本token] + [图像patch] + [特殊分隔符],总长度≤1024。
3.1.2 自回归生成过程

DALL·E采用自回归(Autoregressive)生成方式,逐patch预测图像内容:

  1. 输入文本提示(如“a cat wearing a hat”);
  2. Transformer基于文本嵌入生成第一个图像patch;
  3. 将已生成的patch与文本嵌入拼接,生成下一个patch;
  4. 重复直到生成所有1024个patch;
  5. 将patch还原为256×256的图像。

Python伪代码(简化版)

import torch
from transformers import GPT2Tokenizer, GPT2Model

class DALLE:
    def __init__(self, text_encoder, image_encoder, transformer):
        self.text_encoder = text_encoder  # 文本编码器(如GPT-2)
        self.image_encoder = image_encoder  # 图像patch编码器
        self.transformer = transformer  # 多模态Transformer

    def generate(self, text_prompt, image_size=256, max_patches=1024):
        # 编码文本提示
        text_tokens = tokenizer(text_prompt, return_tensors="pt")["input_ids"]
        text_embeds = self.text_encoder(text_tokens).last_hidden_state  # (1, n, 768)
        
        # 初始化图像序列(仅包含起始符)
        image_seq = torch.tensor([[START_TOKEN]], dtype=torch.long)
        
        for _ in range(max_patches):
            # 拼接文本与图像序列
            input_seq = torch.cat([text_embeds, self.image_encoder(image_seq)], dim=1)
            # 预测下一个patch
            logits = self.transformer(input_seq)[:, -1, :]
            next_patch = torch.argmax(logits, dim=-1)
            image_seq = torch.cat([image_seq, next_patch.unsqueeze(1)], dim=1)
        
        # 将patch序列转换为图像
        image = self.image_decoder(image_seq)  # 假设image_decoder将patch还原为像素
        return image

3.2 Stable Diffusion:基于潜在扩散模型的生成逻辑

Stable Diffusion的核心是潜在扩散模型(Latent Diffusion Model, LDM),其架构(图3-3)包含三个模块:

  • 文本编码器:CLIP文本编码器,将文本提示转换为768维的嵌入向量;
  • 扩散模型(UNet):在潜在空间中学习去噪,输入为带噪潜在向量和文本嵌入,输出预测噪声;
  • VAE解码器:将去噪后的潜在向量还原为高分辨率图像(如512×512)。
3.2.1 潜在空间压缩

直接在像素空间(如512×512×3=786432维)训练扩散模型计算成本极高。Stable Diffusion通过VAE将图像压缩到低维潜在空间(图3-4):

  • VAE编码器:将图像x压缩为潜在向量z(z的尺寸通常为原图像的1/8,如512×512→64×64,再通过卷积降维为4×4×8=128维);
  • VAE解码器:将潜在向量z还原为图像x̂,目标是最小化重构损失:LVAE=Ex∼pdata[∥x^−x∥2]\mathcal{L}_{\text{VAE}} = \mathbb{E}_{x \sim p_{\text{data}}} [\|\hat{x} - x\|^2]LVAE=Expdata[x^x2]
3.2.2 扩散过程:正向加噪与逆向去噪

扩散模型的核心是两个马尔可夫过程(图3-5):

  • 正向过程(扩散):逐步向图像添加高斯噪声,直到变为纯噪声。数学上,正向过程定义为:
    q(xt∣xt−1)=N(xt;1−βtxt−1,βtI) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t I) q(xtxt1)=N(xt;1βt xt1,βtI)
    其中βt\beta_tβt是噪声强度(随时间t递增,如β1=1e−4\beta_1=1e-4β1=1e4, βT=0.02\beta_T=0.02β

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值