从DALL·E到Stable Diffusion:AIGC图像生成演进史
关键词:AIGC、扩散模型、Transformer、多模态学习、DALL·E、Stable Diffusion、生成对抗网络(GAN)
摘要:本文系统梳理了AIGC(生成式人工智能)图像生成技术从DALL·E到Stable Diffusion的演进路径,深度解析关键技术突破与底层原理。通过对比两代代表性模型的架构设计、算法逻辑和应用场景,揭示多模态理解、扩散模型优化等核心技术如何推动图像生成从“可用”走向“高质量可控”。文章涵盖数学模型推导、代码实战案例及未来趋势展望,为开发者和研究者提供技术演进的全景视角。
1. 背景介绍
1.1 目的和范围
AIGC图像生成技术的爆发式发展,正在重塑创意产业、设计领域和人机交互模式。本文聚焦2021-2022年的关键技术跃迁——从OpenAI的DALL·E到Stability AI的Stable Diffusion,系统解析:
- 技术演进的底层驱动力(如多模态对齐、计算效率优化);
- 核心模型架构的迭代逻辑(Transformer→扩散模型);
- 从“文本到图像”生成到“可控高质量生成”的能力升级;
- 工业级应用落地的关键突破点。
1.2 预期读者
- AI算法工程师(关注模型优化与落地);
- 计算机视觉/自然语言处理研究者(探索多模态生成前沿);
- 创意产业从业者(理解AIGC工具的技术边界);
- 技术爱好者(希望系统掌握图像生成技术脉络)。
1.3 文档结构概述
本文按“技术演进→原理解析→实战应用→未来展望”的逻辑展开:
- 第2章梳理核心概念与技术脉络;
- 第3-4章深度解析DALL·E与Stable Diffusion的算法原理及数学模型;
- 第5章提供Stable Diffusion的实战代码案例;
- 第6章总结典型应用场景;
- 第7章推荐学习资源与工具;
- 第8章展望未来趋势与挑战。
1.4 术语表
1.4.1 核心术语定义
- AIGC(AI-Generated Content):通过生成式AI模型自动创建文本、图像、视频等内容的技术。
- 扩散模型(Diffusion Model):通过逐步添加噪声(正向过程)和学习去噪(逆向过程)生成数据的生成式模型。
- Transformer:基于自注意力机制的神经网络架构,广泛用于自然语言处理(NLP)和多模态任务。
- CLIP(Contrastive Language-Image Pretraining):OpenAI提出的多模态模型,通过对比学习对齐文本与图像的语义空间。
- VAE(变分自编码器):用于将高维数据(如图像)压缩到低维潜在空间的生成模型。
1.4.2 相关概念解释
- 多模态学习:同时处理文本、图像、音频等多种模态数据,建立跨模态语义关联的技术。
- 潜在空间(Latent Space):高维数据经压缩后的低维表示空间,可降低计算复杂度并保留关键特征。
- 指导生成(Guided Generation):通过文本提示或条件信息引导生成过程,控制输出内容的语义和风格。
2. 核心概念与联系:技术演进的底层逻辑
AIGC图像生成的技术演进可分为三个阶段(图2-1),核心驱动力是多模态理解能力提升与生成效率优化。
2.1 技术演进脉络
graph LR
A[早期探索:GAN主导] --> B[多模态突破:DALL·E]
B --> C[效率革命:Stable Diffusion]
style A fill:#f9f,stroke:#333
style B fill:#9f9,stroke:#333
style C fill:#99f,stroke:#333
图2-1 AIGC图像生成技术演进脉络
2.1.1 早期探索(2014-2020):GAN的主导与局限
生成对抗网络(GAN)是AIGC的起点(Goodfellow et al., 2014)。GAN通过生成器(Generator)与判别器(Discriminator)的对抗训练,学习真实数据分布。典型模型如DCGAN(2015)、StyleGAN(2018)可生成高分辨率人脸、场景图像,但存在三大局限:
- 训练不稳定:生成器与判别器的梯度博弈易导致模式崩溃(Mode Collapse);
- 无控制生成:难以通过文本等条件精确控制生成内容;
- 语义对齐弱:缺乏多模态理解能力,无法关联文本与图像的深层语义。
2.1.2 多模态突破(2021):DALL·E的“文本-图像”对齐革命
OpenAI于2021年发布的DALL·E(基于120亿参数的Transformer)首次实现“文本到图像”的精准生成。其核心创新是多模态语义对齐:
- 预训练CLIP模型(Radford et al., 2021)建立文本与图像的统一语义空间;
- 用CLIP的对齐能力指导Transformer生成符合文本描述的图像。
DALL·E突破了GAN的“无控制”限制,但仍存在缺陷:
- 计算成本高:直接在像素空间生成(256×256图像),内存与算力需求巨大;
- 生成效率低:自回归生成(逐像素预测)导致速度慢;
- 分辨率受限:受限于Transformer的序列长度,仅支持小尺寸图像。
2.1.3 效率革命(2022):Stable Diffusion的潜在空间扩散
Stable Diffusion(Rombach et al., 2022)通过潜在空间扩散+多模态条件实现了“高质量、高效率、高可控”的图像生成。其核心创新是:
- 用VAE将图像压缩到低维潜在空间(如64×64→4×4×8的潜在表示),降低计算复杂度;
- 结合CLIP文本编码器提供条件指导,实现细粒度控制;
- 扩散模型的并行去噪过程替代自回归生成,提升速度。
2.2 关键技术联系
DALL·E与Stable Diffusion的技术联系可归纳为“继承+突破”(图2-2):
- 多模态对齐:均依赖CLIP建立文本与图像的语义关联;
- 条件生成:通过文本提示控制生成内容;
- 效率突破:Stable Diffusion通过潜在空间扩散解决了DALL·E的高成本问题。
graph LR
A[DALL·E] -->|继承| B[CLIP多模态对齐]
A -->|突破| C[自回归生成]
D[Stable Diffusion] -->|继承| B
D -->|突破| E[潜在空间扩散]
style A fill:#9f9,stroke:#333
style D fill:#99f,stroke:#333
图2-2 DALL·E与Stable Diffusion的技术联系
3. 核心算法原理:从Transformer到扩散模型
3.1 DALL·E:基于多模态Transformer的生成逻辑
DALL·E的全称是“DALL·E: Zero-Shot Text-to-Image Generation”,其架构(图3-1)由三部分组成:
- 文本编码器:将输入文本转换为嵌入向量;
- 图像编码器:将图像转换为256×256的像素序列(每个像素用8位颜色表示,共3×256×256=196608维);
- 多模态Transformer:同时处理文本嵌入与图像像素序列,预测下一个像素值。
3.1.1 多模态输入设计
DALL·E将文本与图像统一为序列输入(图3-2):
- 文本经分词后转换为长度为n的token序列(如“a red cat”→[5, 12, 3]);
- 图像被分割为32×32的patch(每个patch对应8×8像素),共1024个patch,每个patch用256维嵌入表示;
- 最终输入序列为:[文本token] + [图像patch] + [特殊分隔符],总长度≤1024。
3.1.2 自回归生成过程
DALL·E采用自回归(Autoregressive)生成方式,逐patch预测图像内容:
- 输入文本提示(如“a cat wearing a hat”);
- Transformer基于文本嵌入生成第一个图像patch;
- 将已生成的patch与文本嵌入拼接,生成下一个patch;
- 重复直到生成所有1024个patch;
- 将patch还原为256×256的图像。
Python伪代码(简化版):
import torch
from transformers import GPT2Tokenizer, GPT2Model
class DALLE:
def __init__(self, text_encoder, image_encoder, transformer):
self.text_encoder = text_encoder # 文本编码器(如GPT-2)
self.image_encoder = image_encoder # 图像patch编码器
self.transformer = transformer # 多模态Transformer
def generate(self, text_prompt, image_size=256, max_patches=1024):
# 编码文本提示
text_tokens = tokenizer(text_prompt, return_tensors="pt")["input_ids"]
text_embeds = self.text_encoder(text_tokens).last_hidden_state # (1, n, 768)
# 初始化图像序列(仅包含起始符)
image_seq = torch.tensor([[START_TOKEN]], dtype=torch.long)
for _ in range(max_patches):
# 拼接文本与图像序列
input_seq = torch.cat([text_embeds, self.image_encoder(image_seq)], dim=1)
# 预测下一个patch
logits = self.transformer(input_seq)[:, -1, :]
next_patch = torch.argmax(logits, dim=-1)
image_seq = torch.cat([image_seq, next_patch.unsqueeze(1)], dim=1)
# 将patch序列转换为图像
image = self.image_decoder(image_seq) # 假设image_decoder将patch还原为像素
return image
3.2 Stable Diffusion:基于潜在扩散模型的生成逻辑
Stable Diffusion的核心是潜在扩散模型(Latent Diffusion Model, LDM),其架构(图3-3)包含三个模块:
- 文本编码器:CLIP文本编码器,将文本提示转换为768维的嵌入向量;
- 扩散模型(UNet):在潜在空间中学习去噪,输入为带噪潜在向量和文本嵌入,输出预测噪声;
- VAE解码器:将去噪后的潜在向量还原为高分辨率图像(如512×512)。
3.2.1 潜在空间压缩
直接在像素空间(如512×512×3=786432维)训练扩散模型计算成本极高。Stable Diffusion通过VAE将图像压缩到低维潜在空间(图3-4):
- VAE编码器:将图像x压缩为潜在向量z(z的尺寸通常为原图像的1/8,如512×512→64×64,再通过卷积降维为4×4×8=128维);
- VAE解码器:将潜在向量z还原为图像x̂,目标是最小化重构损失:LVAE=Ex∼pdata[∥x^−x∥2]\mathcal{L}_{\text{VAE}} = \mathbb{E}_{x \sim p_{\text{data}}} [\|\hat{x} - x\|^2]LVAE=Ex∼pdata[∥x^−x∥2]。
3.2.2 扩散过程:正向加噪与逆向去噪
扩散模型的核心是两个马尔可夫过程(图3-5):
-
正向过程(扩散):逐步向图像添加高斯噪声,直到变为纯噪声。数学上,正向过程定义为:
q(xt∣xt−1)=N(xt;1−βtxt−1,βtI) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t I) q(xt∣xt−1)=N(xt;1−βtxt−1,βtI)
其中βt\beta_tβt是噪声强度(随时间t递增,如β1=1e−4\beta_1=1e-4β1=1e−4, βT=0.02\beta_T=0.02β