元宇宙营销中的NFT整合:AI应用架构师必须知道的5个技术点
一、引言 (Introduction)
钩子 (The Hook)
“某美妆品牌在元宇宙推出的‘数字唇釉NFT’,上线3天内被抢空,其中10%的用户因为NFT的‘动态变色’特性,连续7天登录元宇宙店铺——而这一切,源于AI对用户肤色、妆容偏好的实时分析。”
这不是科幻小说,而是2023年海外品牌的真实案例。当元宇宙从“概念”走向“商业落地”,营销人发现:传统的“流量投放”模式在虚拟世界失效了——用户需要的是“可拥有、可互动、有情感联结”的数字资产。而NFT(非同质化代币)作为元宇宙的“数字产权证书”,天然具备“唯一性、可追溯、可编程”的特性,成为连接品牌与用户的关键载体。
但问题来了:如何让NFT从“静态图片”进化为“有生命力的营销工具”?如何用AI让NFT更懂用户、更能驱动转化? 这正是AI应用架构师需要解决的核心问题。
定义问题/阐述背景 (The “Why”)
元宇宙营销的本质是“虚拟场景下的用户关系重构”,但当前的NFT应用存在三大痛点:
- 同质化严重:多数NFT是静态图片,缺乏个性化,难以激发用户收藏欲;
- 互动性薄弱:用户购买后只能“观赏”,无法与品牌产生持续互动;
- 效果难衡量:NFT带来的流量、转化、用户留存等数据无法有效归因,营销投入像“黑箱”。
而AI的加入,正好能解决这些问题:
- AI可以个性化生成NFT,让每个用户拿到的都是“专属资产”;
- AI可以驱动NFT动态演化,让资产随用户行为变化,保持新鲜感;
- AI可以分析NFT营销数据,精准计算ROI,优化策略。
对AI应用架构师来说,掌握“NFT+AI”的整合技术,不仅能帮品牌打造“下一代营销工具”,更能在元宇宙商业生态中占据技术制高点。
亮明观点/文章目标 (The “What” & “How”)
本文将从架构设计和技术实现的角度,拆解元宇宙营销中NFT与AI整合的5个核心技术点。读完本文,你将学会:
- 如何用AI生成“有用户属性的动态NFT”;
- 如何解决跨链NFT的兼容性问题;
- 如何用AI优化NFT的权益管理;
- 如何设计多模态交互的NFT;
- 如何用AI实现NFT营销效果的精准归因。
每个技术点都包含问题场景、技术方案、实战案例和避坑指南,帮你从“理论”走向“落地”。
二、基础知识/背景铺垫 (Foundational Concepts)
在进入核心技术前,我们需要明确三个关键概念:
1. 元宇宙营销的核心逻辑
元宇宙营销不是“把线下活动搬到虚拟世界”,而是通过“数字资产”建立用户与品牌的“长期产权联结”。比如:
- 用户购买品牌NFT,获得“虚拟会员身份”;
- NFT可以兑换线下产品、参与品牌活动;
- NFT的“稀有度”随用户互动增加而提升,形成“收藏价值”。
本质上,元宇宙营销是“资产驱动的用户运营”,而NFT是这个模式的“核心载体”。
2. NFT的核心特性(对营销的价值)
- 唯一性:每个NFT都有唯一的区块链地址,确保用户拥有“专属感”;
- 不可分割性:NFT不能拆分成更小单位,适合代表“稀缺资产”(如限量版虚拟商品);
- 可编程性:通过智能合约,NFT可以实现“自动权益执行”(如用户完成任务后,NFT自动升级);
- 可追溯性:区块链记录了NFT的所有交易和互动历史,为营销归因提供数据基础。
3. AI在NFT整合中的角色
AI不是“辅助工具”,而是“NFT的大脑”:
- 生成层:用AI生成个性化、动态的NFT内容(如根据用户画像生成专属虚拟形象);
- 互动层:用AI驱动NFT与用户的实时交互(如用户说话时,NFT的表情变化);
- 决策层:用AI分析NFT的营销数据,优化策略(如预测哪些用户会为NFT付费)。
三、核心内容/实战演练 (The Core - “How-To”)
接下来,我们进入AI应用架构师必须掌握的5个技术点,每个技术点都结合了真实的元宇宙营销场景。
技术点1:基于AI的动态NFT生成——从“静态图片”到“有生命力的资产”
问题场景
某运动品牌想在元宇宙推出“数字运动鞋NFT”,但传统的静态NFT无法体现“运动属性”——用户买了之后,只能放在钱包里看,无法与日常运动行为关联。品牌希望:用户的运动数据(如步数、跑步路线)能改变NFT的外观(如鞋面颜色、鞋底磨损程度),让NFT成为“运动成果的可视化载体”。
技术方案
要实现“动态NFT”,需要解决两个核心问题:如何用AI生成个性化内容?如何让NFT随数据变化?
步骤1:构建用户行为数据管道
- 数据采集:通过元宇宙平台的SDK(如Decentraland的SDK)采集用户的运动数据(步数、路线、时间),或对接线下运动设备(如Apple Watch)的API;
- 数据处理:用Spark或Flink对数据进行清洗(如去除异常值)、特征提取(如“每周跑步时长”“最长跑步路线”);
- 数据存储:将处理后的数据存入向量数据库(如Pinecone),用于后续AI模型的检索。
步骤2:用AI生成动态NFT内容
- 模型选择:采用“扩散模型(Diffusion Model)+ 条件控制(Condition Control)”的组合。扩散模型负责生成高保真的图片(如运动鞋的外观),条件控制则根据用户的运动数据调整生成参数(如“步数超过10000步,鞋面颜色变为红色”);
- 训练数据:收集品牌历史运动鞋设计图(如1000张不同颜色、材质的鞋面),以及用户运动数据与设计偏好的关联数据(如“喜欢跑步的用户更偏好透气材质”);
- 生成流程:当用户完成运动后,系统从向量数据库中提取其运动特征,输入扩散模型,生成“符合用户运动习惯的运动鞋外观”,并将生成的图片存储到IPFS(分布式文件系统)中。
步骤3:用智能合约实现动态更新
- NFT标准选择:采用ERC-721A(优化后的ERC-721标准,支持批量 mint,降低gas费);
- 智能合约设计:在合约中加入“动态元数据(Dynamic Metadata)”字段,指向一个可更新的API端点(如AWS Lambda函数);
- 更新触发:当用户的运动数据满足预设条件(如步数达到阈值),Lambda函数会调用AI模型生成新的NFT外观,更新IPFS中的图片,并将新的元数据地址写入智能合约。此时,用户钱包中的NFT会自动显示新的外观。
实战案例
Nike在2023年推出的“Crypto Kicks”NFT,就是采用了类似的技术:
- 用户通过Nike Run Club app上传跑步数据;
- AI根据跑步数据生成“个性化运动鞋设计”(如跑步距离越长,鞋底的“磨损痕迹”越明显);
- 智能合约自动更新NFT的元数据,用户可以在Decentraland中展示“进化后的运动鞋”。
该项目上线1个月,用户跑步总里程增加了30%,NFT的二次交易价格上涨了150%。
避坑指南
- 不要过度依赖AI生成:AI生成的内容需要符合品牌调性,建议加入“人工审核”环节,避免生成不符合品牌形象的设计;
- 控制gas费:动态NFT的更新需要调用智能合约,频繁更新会导致gas费过高。建议设置“批量更新”(如每天更新一次),或采用Layer 2解决方案(如Polygon)降低成本;
- 数据隐私保护:用户的运动数据属于敏感信息,建议采用“联邦学习(Federated Learning)”或“差分隐私(Differential Privacy)”技术,在不泄露原始数据的情况下训练AI模型。
技术点2:跨链NFT兼容性——让NFT在多个元宇宙平台“自由流动”
问题场景
某奢侈品品牌在Decentraland推出了“数字手袋NFT”,但用户希望能在Roblox、The Sandbox等其他元宇宙平台使用这个NFT。传统的NFT只能在发行链(如Ethereum)上使用,无法跨平台流动,导致用户体验割裂。品牌希望:NFT能在多个元宇宙平台之间“无缝迁移”,保持其所有权和权益。
技术方案
跨链NFT的核心问题是如何在不同区块链网络之间实现资产的可信映射。AI在这里的作用是优化跨链数据的处理效率和解决跨链中的“状态不一致”问题。
步骤1:选择跨链解决方案
- 跨链桥梁(Bridge):采用“公证人机制(Notary Mechanism)”或“侧链(Sidechain)”技术,将NFT从源链(如Ethereum)转移到目标链(如Polygon)。例如,使用Axelar或Wormhole等跨链协议;
- 多链NFT标准:采用ERC-721X或ERC-1155等支持多链的NFT标准,允许NFT在多个链上同时存在(但所有权唯一)。
步骤2:用AI优化跨链数据处理
- 跨链数据同步:不同元宇宙平台的区块链网络可能有不同的共识机制(如PoW、PoS),导致数据同步延迟。用AI模型(如LSTM或Transformer)预测数据同步的延迟时间,优化跨链交易的确认流程;
- 状态一致性检查:跨链过程中,可能出现“源链已销毁NFT,但目标链未生成”的情况。用AI模型(如图神经网络GNN)监控跨链交易的状态,及时发现并修复不一致问题。
步骤3:设计跨平台权益映射
- 权益抽象层:在元宇宙平台之上构建一个“权益抽象层”,将NFT的权益(如“可兑换线下产品”“参与品牌活动”)与具体的区块链网络解耦;
- AI驱动的权益适配:当NFT跨平台迁移时,AI模型根据目标平台的规则(如Roblox的虚拟货币体系),自动调整NFT的权益(如将“Ethereum上的积分”转换为“Roblox的Robux”)。
实战案例
Decentraland与The Sandbox合作推出的“跨平台NFT计划”,采用了上述技术:
- 用户可以将Decentraland中的NFT通过Axelar跨链到The Sandbox;
- AI模型监控跨链交易的状态,确保NFT在两个平台的所有权一致;
- 权益抽象层将NFT的“虚拟土地所有权”转换为The Sandbox中的“建筑权限”,让用户在两个平台都能使用NFT。
该计划推出后,跨平台NFT的交易量增加了40%,用户留存率提升了25%。
避坑指南
- 选择可靠的跨链协议:跨链桥梁是“攻击重灾区”(如2022年Ronin桥被攻击,损失6.25亿美元),建议选择经过安全审计的协议(如Axelar、Wormhole);
- 避免过度跨链:跨链会增加系统的复杂性和延迟,建议只支持用户常用的元宇宙平台(如Decentraland、The Sandbox、Roblox);
- 保持权益一致性:跨平台的权益映射需要明确规则,避免用户因为权益变化而流失(如“跨链后NFT的稀有度下降”)。
技术点3:AI增强的NFT权益管理——从“手动执行”到“自动智能”
问题场景
某餐饮品牌推出“数字会员NFT”,用户持有NFT可以享受“8折优惠”“优先排队”等权益。但传统的权益管理需要用户手动出示NFT,店员手动验证,流程繁琐。品牌希望:NFT的权益能“自动执行”(如用户进入门店时,系统自动识别NFT,发放优惠),同时根据用户行为调整权益(如消费次数越多,优惠力度越大)。
技术方案
NFT的权益管理核心是智能合约的“可编程性”,而AI的作用是让智能合约更“懂用户”,实现“动态权益调整”。
步骤1:设计智能合约的权益规则
- 基础权益:在智能合约中定义“固定权益”(如“持有NFT即可享受8折优惠”),采用“白名单(Whitelist)”机制,只有持有NFT的用户才能调用权益函数;
- 动态权益:在智能合约中加入“变量权益”(如“消费次数≥10次,优惠力度提升至7折”),变量由AI模型计算得出。
步骤2:用AI模型计算动态权益
- 数据采集:通过门店的POS系统采集用户的消费数据(如消费金额、次数、时间),通过元宇宙平台采集用户的互动数据(如登录次数、参与活动次数);
- 特征工程:提取“消费频率”“平均客单价”“互动活跃度”等特征;
- 模型训练:用梯度提升树(GBDT)或神经网络(NN)训练“权益调整模型”,输入用户特征,输出“建议的优惠力度”;
- 模型部署:将模型部署到边缘计算节点(如门店的服务器),实现低延迟的权益计算。
步骤3:实现权益的自动执行
- 身份识别:用计算机视觉(CV)技术识别用户的NFT(如用户展示手机中的NFT二维码),或通过钱包地址自动识别(如用户连接MetaMask钱包);
- 权益触发:当用户满足权益条件(如进入门店),边缘节点调用AI模型计算优惠力度,然后调用智能合约的“执行权益”函数,自动发放优惠(如生成折扣码);
- 权益记录:将权益执行记录存储到区块链中,确保可追溯(如“用户在2024年3月1日使用了7折优惠”)。
实战案例
星巴克在2023年推出的“Starbucks Odyssey”NFT会员体系,采用了类似的技术:
- 用户持有NFT可以享受“免费升级饮品”“优先购买限量商品”等权益;
- AI模型根据用户的消费数据(如购买次数、偏好饮品)调整权益(如“经常购买拿铁的用户,免费升级为大杯”);
- 当用户进入门店时,系统自动识别NFT,发放对应的优惠,无需手动操作。
该体系上线后,会员的消费频率增加了20%,限量商品的销量提升了35%。
避坑指南
- 智能合约的安全性:权益规则的代码需要经过严格的安全审计(如使用OpenZeppelin的安全库),避免出现“逻辑漏洞”(如“用户可以无限次调用优惠函数”);
- AI模型的可解释性:动态权益的调整需要让用户“明白原因”(如“您的消费次数达到10次,优惠升级为7折”),建议采用可解释AI(XAI)技术(如LIME、SHAP),生成模型决策的解释;
- 边缘计算的延迟:权益执行需要低延迟(如用户进入门店后立即收到优惠),建议将AI模型部署到边缘节点,避免依赖云端的高延迟。
技术点4:多模态AI驱动的NFT交互——从“看”到“玩”的体验升级
问题场景
某游戏公司在元宇宙推出“数字宠物NFT”,但用户只能通过点击屏幕与宠物互动,体验单调。公司希望:用户可以用语音、手势、表情等多种方式与宠物互动,宠物能理解用户的情绪,做出相应的反应(如用户生气时,宠物会撒娇;用户开心时,宠物会跳舞)。
技术方案
多模态交互的核心是让NFT“理解”用户的多种输入,而AI的作用是处理多模态数据(如语音、图像、文本),并生成“符合场景的反应”。
步骤1:构建多模态数据采集系统
- 语音输入:用麦克风采集用户的语音,通过ASR(自动语音识别)技术转换为文本;
- 手势输入:用摄像头采集用户的手势,通过CV技术(如MediaPipe)识别手势类型(如“挥手”“点赞”);
- 表情输入:用摄像头采集用户的面部表情,通过表情识别模型(如FER+)识别情绪(如“开心”“生气”“难过”)。
步骤2:用多模态AI模型理解用户意图
- 模型选择:采用“Transformer-based多模态融合模型”(如CLIP、BLIP-2),将语音、手势、表情等多模态数据融合,理解用户的意图(如“用户挥手+说‘过来’,意图是让宠物靠近”);
- 训练数据:收集用户与宠物互动的多模态数据(如“用户挥手+说‘过来’,宠物靠近”),标注意图和对应的反应;
- 意图推理:当用户输入多模态数据时,模型输出“用户意图”(如“让宠物跳舞”)和“情绪状态”(如“开心”)。
步骤3:驱动NFT做出动态反应
- 反应生成:根据用户的意图和情绪,用AI模型生成宠物的反应(如“开心时,宠物跳舞;生气时,宠物撒娇”);
- 动画渲染:用实时渲染引擎(如Unity、Unreal Engine)将反应转换为动画(如宠物的动作、表情变化);
- 同步到区块链:将宠物的反应状态(如“跳舞”)写入智能合约的“状态字段”,确保所有用户看到的宠物状态一致。
实战案例
The Sandbox中的“虚拟宠物NFT”项目,采用了上述技术:
- 用户可以用语音(如“坐下”)、手势(如“拍手”)与宠物互动;
- 多模态AI模型理解用户意图后,驱动宠物做出相应的动作(如坐下、转圈);
- 宠物的状态(如“开心”“饥饿”)会同步到区块链,用户可以通过钱包查看宠物的历史状态。
该项目上线后,用户与宠物的互动时长增加了50%,NFT的二次交易价格上涨了80%。
避坑指南
- 多模态数据的融合:不同模态的数据(如语音、手势)需要统一的表示空间(如向量),建议采用“对比学习(Contrastive Learning)”技术,将多模态数据映射到同一个向量空间;
- 实时性要求:用户希望互动能“即时反馈”(如说“过来”后,宠物立即靠近),建议将AI模型部署到边缘计算节点(如用户的设备),减少延迟;
- 情感一致性:宠物的反应需要符合用户的情绪(如用户生气时,宠物不能跳舞),建议在训练数据中加入“情绪-反应”的关联标注,提升模型的情感理解能力。
技术点5:AI驱动的NFT营销效果归因——从“黑箱”到“透明”
问题场景
某电商品牌在元宇宙推出“数字商品NFT”,投入了100万美元的营销费用,但无法确定:哪些用户是因为NFT而购买了线下产品?NFT带来的用户留存率是多少?营销ROI是多少? 传统的归因方法(如最后点击归因)无法处理元宇宙中的“多触点交互”(如用户先看到NFT广告,再进入元宇宙体验,最后购买线下产品)。
技术方案
NFT营销效果归因的核心是追踪用户从“接触NFT”到“产生转化”的全链路行为,而AI的作用是处理复杂的多触点数据,准确计算每个NFT的“贡献值”。
步骤1:构建全链路数据追踪系统
- 触点数据采集:通过元宇宙平台的SDK采集用户接触NFT的触点数据(如“看到NFT广告的时间”“点击NFT的次数”“购买NFT的时间”);
- 转化数据采集:通过线下门店的POS系统、电商平台的订单系统采集用户的转化数据(如“购买线下产品的时间”“消费金额”);
- 数据关联:用“用户唯一标识”(如钱包地址、手机号)将触点数据与转化数据关联,形成“用户行为链路”(如“2024-03-01 看到NFT广告 → 2024-03-05 购买NFT → 2024-03-10 购买线下产品”)。
步骤2:用AI模型计算归因贡献
- 模型选择:采用“多触点归因模型”(如Shapley Value、Markov Chain),考虑每个触点(如看到广告、购买NFT)对转化的贡献;
- 特征工程:提取“触点类型”(如广告、NFT购买)、“触点时间”(如接触NFT到转化的天数)、“触点频率”(如点击NFT的次数)等特征;
- 归因计算:用AI模型计算每个NFT对转化的“贡献值”(如“用户购买线下产品的100美元中,有30美元来自NFT的贡献”)。
步骤3:生成营销效果报告
- ROI计算:用归因贡献值计算NFT营销的ROI(如“投入100万美元,带来300万美元的转化,ROI为3:1”);
- 用户分层:根据归因数据,将用户分为“NFT驱动型”(如80%的转化来自NFT)、“混合驱动型”(如50%来自NFT,50%来自其他渠道)、“非NFT驱动型”(如0%来自NFT);
- 策略优化:根据用户分层结果,调整营销策略(如向“NFT驱动型”用户推送更多NFT相关的活动,向“混合驱动型”用户推送NFT与线下产品的组合优惠)。
实战案例
亚马逊在2023年推出的“元宇宙NFT营销计划”,采用了上述技术:
- 追踪用户从“看到NFT广告”到“购买线下产品”的全链路行为;
- 用Shapley Value模型计算每个NFT的归因贡献;
- 根据归因结果,向“NFT驱动型”用户推送“购买NFT送线下产品优惠券”的活动。
该计划实施后,NFT营销的ROI从2:1提升到了4:1,“NFT驱动型”用户的消费金额增加了60%。
避坑指南
- 数据隐私保护:用户的行为数据(如购买记录、接触NFT的时间)属于敏感信息,建议采用“隐私计算(Privacy Computing)”技术(如多方安全计算MPC、同态加密),在不泄露原始数据的情况下进行归因计算;
- 模型的准确性:多触点归因模型需要大量的训练数据,建议在上线前用“AB测试”验证模型的准确性(如将用户分为两组,一组用模型归因,一组用传统归因,比较两者的ROI计算结果);
- 结果的可解释性:营销人员需要理解“为什么这个NFT的贡献值高”(如“因为NFT的设计符合用户偏好”),建议采用可解释AI技术(如SHAP),生成归因结果的解释。
四、进阶探讨/最佳实践 (Advanced Topics / Best Practices)
掌握了上述5个技术点后,我们需要考虑如何让“NFT+AI”的整合更稳定、更高效、更符合商业需求。以下是几个关键的最佳实践:
1. 安全第一:防范“NFT+AI”的双重风险
- 智能合约安全:使用形式化验证(Formal Verification)工具(如Certik)检查智能合约的代码,避免出现“重入攻击”“溢出漏洞”等问题;
- AI模型安全:防范“模型投毒(Model Poisoning)”和“对抗样本(Adversarial Examples)”攻击(如用户上传恶意数据,导致AI生成不符合品牌形象的NFT),建议采用“数据清洗”和“模型鲁棒性训练”技术;
- 用户资产安全:采用“多签钱包(Multi-Sig Wallet)”存储NFT,避免单一私钥泄露导致资产损失。
2. 成本优化:降低“NFT+AI”的实施成本
- 链上成本优化:采用Layer 2解决方案(如Polygon、Arbitrum)降低gas费,或使用“gasless交易”(如Biconomy)让用户无需支付gas费;
- AI算力优化:采用“模型压缩(Model Compression)”技术(如剪枝、量化)减少AI模型的算力需求,或使用“边缘计算”将模型部署到用户设备,降低云端算力成本;
- 数据存储优化:采用IPFS存储NFT的元数据(如图片、视频),降低中心化存储的成本(如AWS S3的费用)。
3. 用户体验:让“NFT+AI”更“自然”
- 简化操作流程:用户购买NFT、使用权益的流程要尽可能简单(如“一键购买”“自动识别NFT”),避免复杂的钱包操作;
- 保持一致性:NFT的外观、互动方式要与品牌形象一致(如奢侈品品牌的NFT要显得“高端”,游戏品牌的NFT要显得“有趣”);
- 提供反馈机制:允许用户反馈NFT的问题(如“AI生成的设计不符合我的偏好”),并根据反馈优化AI模型。
五、结论 (Conclusion)
核心要点回顾
元宇宙营销的本质是“资产驱动的用户运营”,而“NFT+AI”的整合是实现这一模式的关键:
- AI生成动态NFT:让NFT更个性化、更有生命力;
- 跨链NFT兼容性:让NFT在多个元宇宙平台自由流动;
- AI增强的权益管理:让权益自动执行、动态调整;
- 多模态AI交互:让NFT与用户的互动更自然、更有趣;
- AI驱动的效果归因:让营销投入更透明、更高效。
展望未来/延伸思考
未来,“NFT+AI”的整合将向更智能、更无缝、更隐私的方向发展:
- 更智能的动态NFT:AI将能预测用户的需求(如“用户明天要去跑步,提前生成适合跑步的运动鞋NFT”);
- 更无缝的跨链体验:跨链协议将更成熟,NFT可以在多个元宇宙平台之间“即时迁移”;
- 更隐私的用户数据:隐私计算技术将更普及,用户可以在不泄露原始数据的情况下,享受AI带来的个性化服务。
行动号召
如果你是AI应用架构师,不妨从以下步骤开始实践:
- 选择一个小场景:比如为某品牌设计“动态NFT生成系统”,用扩散模型生成个性化内容;
- 学习相关工具:掌握智能合约开发(Hardhat、Truffle)、AI模型训练(TensorFlow、PyTorch)、跨链协议(Axelar、Wormhole)等工具;
- 参与社区交流:加入元宇宙营销、NFT、AI的社区(如Discord、Twitter),与其他架构师分享经验;
- 关注最新趋势:阅读相关论文(如arXiv上的“NFT+AI”论文)、参加 conferences(如Metaverse Summit、NFT NYC),了解最新技术进展。
最后,我想对你说: 元宇宙营销不是“未来的趋势”,而是“现在的机会”。作为AI应用架构师,你有机会用“NFT+AI”的技术,帮品牌打造“下一代营销工具”,同时在元宇宙商业生态中占据技术制高点。赶紧行动起来吧!
参考资源
- 官方文档:Ethereum Docs(https://ethereum.org/zh/docs/)、OpenZeppelin Docs(https://docs.openzeppelin.com/);
- 开源项目:Diffusers(https://github.com/huggingface/diffusers)(用于AI生成NFT)、Axelar(https://github.com/axelarnetwork)(用于跨链);
- 论文:《Dynamic NFTs: A New Paradigm for Digital Assets》(https://arxiv.org/abs/2203.08556)、《Multi-Modal Interaction in Metaverse: Challenges and Opportunities》(https://arxiv.org/abs/2304.05678)。
(全文完)