CentOS安装caffe

本文详细介绍了如何在Linux环境下安装Caffe深度学习框架所需的依赖库,包括protobuf、leveldb、snappy、opencv、boost、hdf5等,并提供了glog、gflags和lmdb的手动编译步骤。此外,还提到了CUDA、BLAS库的选择及Python环境的配置建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般依赖

sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel

剩余的依赖关系,最近的操作系统

sudo yum install gflags-devel glog-devel lmdb-devel

剩余的依赖项,如果找不到

# glog
wget https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/google-glog/glog-0.3.3.tar.gz
tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure
make && make install
# gflags
wget https://github.com/schuhschuh/gflags/archive/master.zip
unzip master.zip
cd gflags-master
mkdir build && cd build
export CXXFLAGS="-fPIC" && cmake .. && make VERBOSE=1
make && make install
# lmdb
git clone https://github.com/LMDB/lmdb
cd lmdb/libraries/liblmdb
make && make install

请注意,glog不能使用最新的gflags版本(2.1)进行编译,因此在解决之前,您需要先使用glog进行构建。

CUDA:通过NVIDIA软件包安装,而不是yum确定库和驱动程序版本。分别安装库和最新驱动程序; 与库捆绑在一起的驱动程序通常是过时的。+ CentOS / RHEL / Fedora:

BLAS:安装ATLAS sudo yum install atlas-devel或安装OpenBLAS或MKL以获得更好的CPU性能。对于Makefile构建,取消注释并相应地设置BLAS_LIB,因为ATLAS通常安装在/usr/lib[64]/atlas)下。

Python(可选):如果你使用默认的Python,你需要sudo yum installpython-devel包中使用Python头来构建pycaffe包装器。

继续编译

参考资料

http://caffe.berkeleyvision.org/install_yum.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值