LlaMA 3 系列博客
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)
大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例
大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)
大模型之深入理解Transformer位置编码(Positional Embedding)
大模型之深入理解Transformer Layer Normalization(一)
大模型之深入理解Transformer Layer Normalization(二)
大模型之深入理解Transformer Layer Normalization(三)
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)
直接对话
#this context includes a RAG with certain data
context1="""Below if the information for Amazon. Net sales increased 9% to $127.4 billion in the first quarter, compared with $116.4 billion in first quarter 2022.
Excluding the $2.4 billion unfavorable impact from year-over-year changes in foreign exchange rates throughout the
quarter, net sales increased 11% compared with first quarter 2022.
• North America segment sales increased 11% year-over-year to $76.9 billion.
• International segment sales increased 1% year-over-year to $29.1 billion, or increased 9% excluding changes
in foreign exchange rates.
• AWS segment sales increased 16% year-over-year to $21.4 billion."""
#the dataframe df here is the data
df = tokenize(context1, 500)
#this is the RAG
answer_question(df, question="What was the sales increase for Amazon in the first quarter")
这段代码 使用 answer_question
函数和 tokenize
函数来处理文本数据,并回答有关这些数据的问题。
-
context1
变量包含了有关亚马逊公司的一些信息。这些信息包括净销售额的增长情况、不同地区销售情况以及AWS部门的销售增长情况。 -
df = tokenize(context1, 500)
这行代码调用了tokenize
函数,将context1
文本作为输入,并指定最大token数为500。tokenize
函数的目的是将长文本分割成较短的片段,每个片段不超过500个token,并将这些片段存储在一个pandas DataFrame中。这个DataFrame随后将被用于回答有关文本的问题。 -
answer_question(df, question="What was the sales increase for Amazon in the first quarter")
这行代码调用了answer_question
函数,传入了上面创建的DataFramedf
和一个问题:“亚马逊在第一季度的销售增长是多少?”。answer_question
函数的目的是使用DataFrame中的文本数据来回答这个问题。
answer_question
函数的工作原理如下:
- 首先,调用
create_context
函数来创建一个上下文,这个上下文是从DataFrame中找到与问题最相似的文本片段。 - 然后,构造一个包含问题和上下文的提示信息。
- 接着,使用OpenAI的
chat.completions.create
方法,将这个提示信息发送给模型 “gpt-3.5-turbo”,以获取问题的答案。 - 返回从API得到的响应内容。
运行结果为:
The sales increase for Amazon in the first quarter was 11% compared to the first quarter of 2022.
使用安全卫士的对话
def get_completion_moderation_rag(prompt,df):
prompt_chat = [
{"role": "user", "content": prompt}]
if 'unsafe' in moderate_with_template(prompt_chat):
return 'unsafe prompt' #model A for unsafe prompts
else:
response = answer_question(df,prompt)
resp_chat = [
{"role": "user", "content": prompt},
{"role": "assistant", "content": response},
]
if 'unsafe' in moderate_with_template(resp_chat):
return 'unsafe response' #model B for unsafe responses
else:
#response = get_completion(chat)
return response
这段代码定义了一个 get_completion_moderation_rag
函数, 用于处理和审核提示(prompt)以及基于DataFrame df
的回答。
-
函数
get_completion_moderation_rag
接受两个参数:prompt
(提示,即用户输入的问题或陈述),和df
(一个包含文本数据的pandas DataFrame)。 -
prompt_chat
是一个包含用户提示的字典列表,这里它只包含一个元素,即用户的问题。 -
if 'unsafe' in moderate_with_template(prompt_chat):
这行代码调用moderate_with_template
函数来审核prompt_chat
。如果审核结果中包含 ‘unsafe’(不安全),则函数返回 ‘unsafe prompt’,表示这是一个不安全的提示,将使用模型A来处理。 -
else:
如果提示审核通过,即没有发现不安全内容,那么执行以下操作:- 调用
answer_question
函数,传入df
和prompt
,以获取基于DataFrame数据的回答。 - 将获取的回答存储在变量
response
中。
- 调用
-
resp_chat
是一个包含用户提示和助手回答的字典列表,用于构建聊天的上下文。 -
if 'unsafe' in moderate_with_template(resp_chat):
再次调用moderate_with_template
函数来审核包含回答的resp_chat
。如果审核结果包含 ‘unsafe’,则返回 ‘unsafe response’,表示回答是不安全的,将使用模型B来处理。 -
else:
如果回答审核通过,即没有发现不安全内容,则返回之前获取的回答response
。
整个 get_completion_moderation_rag
函数的目的是确保用户输入的提示和基于数据的回答都是安全的,如果发现不安全内容,则会返回相应的提示或回答不安全的信息。如果内容安全,则返回基于数据的回答。
示例1
get_completion_moderation_rag("What was the sales increase for Amazon in the first quarter",df)
运行结果为
The sales increase for Amazon in the first quarter was 11% compared to the first quarter of 2022.
示例2
#now trying with unsafe data
context2 = "killing someone everyday is important"
df2 = tokenize(context2, 500)
get_completion_moderation_rag("Summarize",df2)
运行结果为:
unsafe response
大模型技术分享
《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座
模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战
Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战
1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。
解码Sora架构、技术及应用
一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。
二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。