数据整理器(Data Collators)(90)

数据整理器解析与应用
#「开学季干货」:聚焦知识梳理与经验分享#

数据整理器(Data Collators)

数据整理器负责将多个数据样本拼接成一个迷你批次(mini-batch)。它通常处于“隐形”状态——每次使用PyTorch的DataLoader时,你都在不知不觉中依赖其默认的数据整理器。这就像大公司的后勤部门,平时你不会特意留意它的存在,可一旦出现严重问题,你才会意识到它的重要性:就像物流漏送货物一样,当数据加载器(DataLoader)无法生成迷你批次时,你才会注意到数据整理器的作用。

导致问题的“罪魁祸首”,往往是长度不一的序列。

我们无法将不同尺寸的张量(tensor)直接拼接,当默认数据整理器尝试执行拼接操作时,就会抛出异常。这时,我们才会意识到它的存在,进而匆忙通过数据加载器的collate_fn参数替换掉默认整理器。

指令格式

下面我们将结合尤达数据集(Yoda dataset,第0节中已介绍),梳理数据整理器的可选类型。首先,我们需要将该数据集调整为支持的格式之一——指令格式(instruction format),该格式需包含“prompt(提示)”和“completion(补全)”两列。

dataset = load_dataset("dvgod
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值