论文阅读:Deep Multi-View Subspace Clustering with Anchor Graph

论文地址:Deep Multi-view Subspace Clustering with Anchor Graph (ijcai.org)

代码地址:


摘要

深度多视图子空间聚类(Deep Multi-View Subspace Clustering,DMVSC)近年来因其卓越的性能受到越来越多的关注。然而,现有的DMVSC方法仍存在两个问题:

(1)主要集中于使用自编码器对数据进行非线性嵌入,而自编码器通常很少考虑聚类目标,这可能导致嵌入对于聚类来说并非最优;

(2)现有方法通常具有二次甚至三次复杂度,这使得处理大规模数据具有较大挑战。

为了解决这些问题,本文提出了一种基于锚点图的全新深度多视图子空间聚类方法(DMCAG)。具体来说,DMCAG首先为每个视图独立学习嵌入特征,并利用这些特征获取子空间表示。为显著降低复杂度,我们为每个视图构建一个小规模的锚点图。随后,在集成的锚点图上执行谱聚类以获得伪标签。为克服次优嵌入特征带来的负面影响,我们利用伪标签对嵌入过程进行优化,使其更适合聚类任务。伪标签和嵌入特征交替更新。此外,我们基于对比学习设计了一种保持标签一致性的策略,以提升聚类性能。在真实数据集上的实验研究表明,本文方法在聚类性能上优于其他最先进的方法。

引言

子空间聚类经过多年的研究,假设数据点来自低维子空间,并且可以表示为其他数据点的线性组合。特别是,稀疏子空间聚类(SSC)[Elhamifar和Vidal,2013]展示了其在为来自同一子空间的点找到稀疏表示方面的能力。在获得子空间表示后,通常使用谱聚类来获取最终的聚类结果。另一方面,低秩子空间分割方法在[Liu等,2012]中被提出,用于找到低秩子空间表示。尽管已有一些最先进的性能成果,但大多数现有方法仅集中于单视图聚类任务。在许多现实应用中,随着数据的指数增长,数据的描述逐渐从单一来源扩展到多个来源。例如,一个视频包含文本、图像和音频。一段文本可以翻译成多种语言,场景也可以从不同的角度进行描述。这些不同的视图往往包含互补信息。充分利用多视图之间的互补性和一致性信息有望提升聚类性能。

考虑到多视图数据所带来的信息多样性,多视图子空间聚类(MVSC)的研究最近引起了越来越多的关注。MVSC的目标是通过学习多视图数据的融合表示,寻找到一个统一的子空间,然后在相应的子空间中分离数据。在文献中,已经提出了许多MVSC方法[Zhang等,2015;Luo等,2018;Li等,2019;Wang等,2019;Zheng等,2020;Liu等,2021;Si等,2022]。然而,现有方法的一个主要弱点是其高时间和空间复杂度通常在样本数量n上是二次或三次复杂度。最近,一些基于锚点的多视图子空间聚类方法[Chen和Cai,2011;Sun等,2021;Kang等,2020;Wang等,2022;Liu等,2022]得到了发展,这些方法能够在显著减少存储和计算时间的同时,取得良好的聚类性能。通常,锚点图是等权重的,并融合为共识图,然后进行谱聚类以获得聚类结果。

另一方面,受到深度神经网络(DNN)的启发,许多深度多视图子空间聚类(DMVSC)方法被提出[Peng等,2020;Wang等,2020;Kheirandishfard等,2020;Sun等,2019

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值