文章目录
Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning
摘要
背景: 耻骨联合和胎头 (PSFH) 的分割是监测分娩进展和识别潜在分娩并发症的关键步骤。尽管深度学习取得了进步,但缺乏带注释的医学图像阻碍了分割的训练。传统的半监督学习方法主要利用基于卷积神经网络 (CNN) 的统一网络模型,并应用一致性正则化来减轻对大量注释数据的依赖。然而,这些方法在捕获未标记数据的判别特征和描绘超声图像中 PSFH 模糊边界所固有的长期依赖性方面往往不足。
目的: 为了解决这些限制,引入了一种新的框架,即 CNN 和 Transformer 相结合的双学生和教师 (DSTCT),它协同集成了 CNN 和 Transformer 的功能。
方法: 框架包括一个作为“老师”的 Vision Transformer (ViT) 和两个“学生”模型 - 一个 ViT 和一个 CNN。这种双学生设置通过生成硬伪标签和软伪标签来实现相互监督,并通过最小化分类器确定性差异来优化其预测的一致性。教师模型通过施加一致性正则化约束进一步加强了这种架构中的学习。为了增强方法的泛化能力,采用了数据和模型扰动技术的混合。
结果: 优于 10 种当代半监督分割方法。
代码地址