文章目录

玩转PDF文本提取,用这个库就对了
一、背景
在日常工作中,我们常常需要处理PDF文件,比如提取文本内容、分析文档结构等。然而,PDF文件的格式复杂,直接提取信息并非易事。pdfminer
库应运而生,它能够高效地解析PDF文件,提取文本、元数据、表格等信息,帮助我们轻松应对各种PDF处理需求。接下来,让我们深入了解这个强大的工具。
二、什么是pdfminer
?
pdfminer
是一个开源的Python第三方库,专门用于解析PDF文件。它提供了丰富的API,可以精确提取文本、分析页面布局、提取元数据等。它的核心功能是将PDF文件的内容转换为可操作的文本数据,方便进一步处理和分析。
三、如何安装pdfminer
?
pdfminer
是一个第三方库,可以通过以下命令行安装:
bash复制
pip install pdfminer.six
安装完成后,可以通过以下命令确认安装是否成功:
bash复制
python -c "import pdfminer; print(pdfminer.__version__)"
如果能够正常输出版本号,说明安装成功。
四、简单库函数使用方法
以下是pdfminer
中常用的五个函数及其使用方法:
1. 提取文本
Python复制
from pdfminer.high_level import extract_text
text = extract_text("example.pdf")
print(text)
extract_text
函数用于从PDF文件中提取全部文本。
2. 获取页面布局信息
Python复制
from pdfminer.layout import LAParams, LTTextBox, LTTextLine
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
resource_manager = PDFResourceManager()
fake_file_handle = io.StringIO()
converter = PDFPageAggregator(resource_manager, laparams=LAParams())
page_interpreter = PDFPageInterpreter(resource_manager, converter)
with open("example.pdf", "rb") as pdf_file:
for page in PDFPage.get_pages(pdf_file):
page_interpreter.process_page(page)
layout = converter.get_result()
for lt_obj in layout:
if isinstance(lt_obj, (LTTextBox, LTTextLine)):
text = lt_obj.get_text()
x, y, width, height = lt_obj.bbox
font = lt_obj._objs[0].fontname
font_size = lt_obj._objs[0].size
print(f"Text: {text.strip()}, Position: ({x:.2f}, {y:.2f}), Font: {font}, Size: {font_size:.2f}")
- 这段代码获取文本块的位置、字体和字号等信息。
3. 提取表格数据
Python复制
from pdfminer.high_level import extract_text
import tabula
table_text = extract_text("table_example.pdf")
print(table_text)
tables = tabula.read_pdf("table_example.pdf", pages="all")
for df in tables:
print(df)
- 使用
pdfminer
提取PDF文档中的表格,并使用tabula
提取表格数据。
4. 提取图像
Python复制
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdftypes import PDFStream
import io
from PIL import Image
with open('example.pdf', 'rb') as file:
parser = PDFParser(file)
document = PDFDocument(parser)
if document.is_extractable:
for xref in document.xrefs:
if xref.get_subtype() == '/Image':
stream_obj = xref.get_object()
if isinstance(stream_obj, PDFStream):
data = stream_obj.get_rawdata()
image = Image.open(io.BytesIO(data))
image.show()
- 提取PDF文档中的图像。
5. 提取元数据
Python复制
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
def extract_metadata(pdf_path):
with open(pdf_path, 'rb') as fh:
parser = PDFParser(fh)
doc = PDFDocument(parser)
metadata = doc.info[0]
for key, value in metadata.items():
print(f"{key}: {value}")
extract_metadata('example.pdf')
- 提取PDF文件的元数据。
五、实际应用场景
以下是pdfminer
在不同场景中的应用示例:
1. 法律文档处理
Python复制
from pdfminer.high_level import extract_text
def extract_legal_document_text(pdf_path):
text = extract_text(pdf_path)
return text
text = extract_legal_document_text('legal_document.pdf')
print(text)
- 在法律行业,通过
pdfminer
提取和分析法律文档中的文本和元数据,自动生成报告。
2. 财务报表分析
Python复制
from pdfminer.layout import LAParams, LTTextBoxHorizontal
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
def extract_financial_tables(pdf_path):
with open(pdf_path, 'rb') as fh:
rsrcmgr = PDFResourceManager()
laparams = LAParams()
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
interpreter = PDFPageInterpreter(rsrcmgr, device)
for page in PDFPage.get_pages(fh, caching=True, check_extractable=True):
interpreter.process_page(page)
layout = device.get_result()
for element in layout:
if isinstance(element, LTTextBoxHorizontal):
print(element.get_text())
extract_financial_tables('financial_report.pdf')
- 在财务行业,通过
pdfminer
提取财务报表中的表格数据,进行自动化的数据分析和处理。
3. 研究论文数据提取
Python复制
from pdfminer.layout import LAParams, LTTextBoxHorizontal, LTFigure
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
def extract_research_paper_content(pdf_path):
with open(pdf_path, 'rb') as fh:
rsrcmgr = PDFResourceManager()
laparams = LAParams()
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
interpreter = PDFPageInterpreter(rsrcmgr, device)
for page in PDFPage.get_pages(fh, caching=True, check_extractable=True):
interpreter.process_page(page)
layout = device.get_result()
for element in layout:
if isinstance(element, LTTextBoxHorizontal):
print(element.get_text())
elif isinstance(element, LTFigure):
print("Figure found")
extract_research_paper_content('research_paper.pdf')
- 在学术研究中,通过
pdfminer
提取研究论文中的文本和图表信息,辅助研究分析。
4. 文本逐页提取
Python复制
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import TextConverter
from io import StringIO
def extract_text_by_page(pdf_path):
resource_manager = PDFResourceManager()
fake_file_handle = StringIO()
converter = TextConverter(resource_manager, fake_file_handle)
page_interpreter = PDFPageInterpreter(resource_manager, converter)
with open(pdf_path, 'rb') as fh:
for page in PDFPage.get_pages(fh, caching=True, check_extractable=True):
page_interpreter.process_page(page)
text = fake_file_handle.getvalue()
yield text
converter.close()
fake_file_handle.close()
for page_text in extract_text_by_page('example.pdf'):
print(page_text)
- 逐页提取PDF文件中的文本,适用于需要逐页处理的情况。
5. 提取目录
Python复制
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines
def extract_toc(pdf_path):
with open(pdf_path, 'rb') as file:
parser = PDFParser(file)
document = PDFDocument(parser)
try:
outlines = document.get_outlines()
toc = []
for (level, title, dest, a, se) in outlines:
toc.append((level, title))
return toc
except PDFNoOutlines:
return []
toc = extract_toc('example.pdf')
for item in toc:
print(f"Level: {item[0]}, Title: {item[1]}")
- 提取PDF文档的目录,方便快速定位文档结构。
六、常见问题及解决方案
以下是使用pdfminer
时常见的三个问题及解决方案:
1. 文本提取为空
-
错误信息 :
extract_text
返回空字符串。 -
原因 :PDF文件可能包含非文本内容,或者文本被嵌入为图像。
-
解决方案 :检查PDF文件的内容,确保文本是可提取的。如果文本嵌入为图像,可以尝试使用OCR工具(如`pytesseract
如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!