

Architecture

Isolation and MVCC

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Multiversion Concurrency Control

Snapshots

Isolation levels

Locks

Vacuuming

3

MVCC

Multiple versions of the same row
versions differ in time of action
time = transaction id (issued in ascending order)

row:

xid
x

1
x

2
x

3
x

4

DELETEINSERT

UPDATE

version 1 version 2 version 3

When several transactions are working simultaneously, a problem arises:
what to do if two of them concurrentry access the same row? If both
transactions are read-only, there is no difficulty. Also there is no problem
with two transactions trying to change the row (in this case, they are
entering the queue and making changes one after another). The most
interesting case is how the writing and reading transactions interact.

There are two simple ways. Such transactions can block each other — but
then performance suffers. Or, the reading transaction immediately sees the
changes made by the writing transaction, even if they are not committed —
but this strongly undesirable, because the changes can be rolled back
afterwards (this is called «dirty reading»).

PostgreSQL goes the hard way and uses MVCC: Multiversioning
Concurrency Control. It stores several versions of the same row (these
versions are often called tuples in PostgreSQL jargon). In this case, the
writing transaction works with its version, and the reader sees its own.

To distinguish versions from each other, they are marked with two numbers
defining the «time» of the action of this version. Time is represented not by
timestamp, but by always-increasing transaction ids (xid). In fact, everything
is a little more complicated, but its not relevant for now.

When a tuple is created, it is marked with the id of the transaction that
executed the INSERT command. When deleted, the tuple is marked with
the id of the transaction that performed DELETE (but not physically
deleted). UPDATE consists of two operations DELETE and INSERT.

https://postgrespro.com/docs/postgresql/11/mvcc

4

Snapshot

Consistent slice of data at a certain point
transaction id — determines the point in time
list of active transactions — not to look on not-yet-committed changes

row 3:

xid
snapshot

row 2:

row 1:

Transaction must see at most one version of each row, so that the entire
data set is consistent. For this, the transaction works with a snapshot of
data created at a specific point in time. A snapshot is not a physical copy of
the data, but only a few numbers:

- the current transaction id at the time of the snapshot creation
(it determines that very point in time),

- the list of active transactions at this moment.

The list is needed in order to consider the changes of only those
transactions that were committed before the creation of the snapshot.
We are not interested in transactions that began before the creation of the
snapshot, but have not yet been committed, as well as those that began
after the creation of the snapshot.

Knowing the snapshot, we can always tell which row version will be visible
in it. Sometimes this will be the actual (most recent) version, as for row 1 in
the illustration. Sometimes not the latest: row 2 is deleted (and the change
is already committed), but the transaction still continues to see this row
while working with its snapshot. This is the correct behavior: it gives a
consistent data snapshot at the selected point in time.

Some rows do not fall into the snapshot at all: row 3 is deleted before the
snapshot was built, so it is not in the snapshot.

5

Locks

Row locks
reading never blocks rows
changing a row blocks it for changes, but not for reads

Table locks
forbid changing or deleting a table while working on it
forbid reading the table when rebuilding or moving
and so on

Locks lifetime
set automatically as needed or manually
removed automatically upon completion of the transaction

Why does MVCC worth the effort? It allows PostgreSQL to do only the most
necessary minimum of locks, thereby increasing system performance.

Most of locks are acquired at the row level. Reading never blocks neither
reading nor writing transactions. Changing the row does not block its
reading. The only case where the transaction will wait for the lock to be
released is if it tries to change a row that has already been changed by
another, not yet committed, transaction.

Locks are also acquired at a higher level, in particular on tables. They are
needed so that no one can delete a table while other transactions read data
from it, or to deny access to a table during rebuilt. As a rule, such locks do
not cause problems, since deleting or rebuilding tables is a quite rare
operation.

All necessary locks are acquired automatically and automatically released
at the end of the transaction. You can also use additional user locks; the
need for this may arises when using isolation levels less strict than
Serializable.

https://postgrespro.com/docs/postgresql/11/explicit-locking

6

Transactions status (xact)

Transactions status
service information; two bits per transaction
special files on disk
shared memory buffers

Commit
set the «transaction committed» bit

Abort
set the «transaction aborted» bit
runs as fast as commit (no rollback required)

MVCC requires to know the status of transactions. Transaction can be in-
progress, or it can be completed either with commit or rollback. Thus, the
status of each transaction requires two bits. The statuses are stored in
special service files, and most recent data is cached in the shared memory
for efficiency.

Previously, transaction status files were located in the PGDATA/pg_clog
directory; since version 10 this directory has been renamed to pg_xact.

At any completion of the transaction (both successful and unsuccessful),
PostgreSQL only needs to set the corresponding status bits. Both commit
and rollback occur equally quickly.

If the aborted transaction managed to create new row versions, these
versions remain in data files (there is no «physical rollback» of data).
Thanks to the status information, other transactions will understand that the
transaction that created or deleted the row versions is in fact aborted and
will not take its changes into account.

7

Vacuum

Old row versions are stored along with the current one
over time, the size of tables and indexes increases

Cleaning process (vacuum)

deletes row versions that are no longer needed
(i. e. not visible in any data snapshot)

works in parallel with other processes

deleted versions leaves «holes» in data files,
which can be used for new row versions

Full vacuum
completely rebuilds the data files, making them compact
exclusively locks the table at run time

In PostgreSQL, all row versions of a table, both current and historical, are
stored together in the same data file. It is clear that over time old row
versions accumulate and this leads to bloat in tables (and in indexes) and
therefore to performance degradation.

Meanwhile, there is no need to store tuples that are no longer visible in any
snapshot. Such tuples are called dead and removed by a special cleaning
process named vacuum. Vacuum physically removes unnecessary tuples
from files, leaving «holes» that are then used for new tuples.

Vacuuming does not block other processes and works in parallel with them.

It is possible to completely rebuild the table and all its indexes by
performing a full vacuum. In this case, the data files become compact, but
this process completely blocks the work with the table during its work.

https://postgrespro.com/docs/postgresql/11/routine-vacuuming

8

Autovacuum

Autovacuum launcher
background process
reacts to data change activity

Autovacuum worker
started by the launcher
as needed
performs actual cleaning

PostgreSQL

backend

OS

postmaster

background processes

autovacuum

shared memory xact

cache

transactions
status

Vacuum usually works automatically and is configured by the administrator
to clear the data on time, avoiding a large increase in the size of the files.
To do this, autovacuum responds to the activity of changing data in the
tables, and not just run on a schedule: the more frequently changes data in
a table, the more frequently the table is vacuumed.

Autovacuum consists of several processes. Autovacuum launcher
background process schedules the work. If necessary, it starts autovacuum
worker processes, which are doing actual cleaning.

9

Isolation levels

Read uncommitted — not supported by PostgreSQL

allows to read uncommitted data

Read committed — used by default

snapshot is built at the beginning of each statement
subsequent identical request can get different data

Repeatable read
snapshot is built at the beginning of the first statement in the transaction
transaction may end in serialization error

Serializable
absolute isolation, but additional overhead
transaction may end in serialization error

The SQL standard defines four levels of isolation: the stricter the level, the
less influence concurrent transactions have on each other. At the time when
the standard was adopted, it was believed that the stricter the level, the
more difficult it is to implement and the stronger its impact on performance
(since then, these ideas have changed somewhat).

The less strict Read Uncommitted level allows dirty reads and is not
supported by PostgreSQL: it does not have any practical value and does
not give a gain in performance.

The Read Committed level is the default isolation level in PostgreSQL.
At this level, a snapshot of the data is built at the beginning of each SQL
statement. Thus, the statement works with constant and consistent data,
but two identical requests, following one after the other, can show different
results.

At Repeatable Read level, a snapshot is built at the beginning of a
transaction (when the first statement is executed). Therefore, all requests in
one transaction see the same data. This level is useful, for example, for
reports consisting of several queries.

The Serializable level guarantees complete isolation: you can write
statements as if the transaction is running alone. Cost of convenience is
failure of a certain percentage of transactions (with «cannot serialize
access» error message). The application must be able to re-run such
transactions.

https://postgrespro.com/docs/postgresql/11/transaction-iso

10

Demonstration

 $ psql
 postgres=#

11

Summary

Multiple versions of each row can be stored in data files

Transactions operate on a consistent data snapshot

Writers do not block readers, readers do not block anyone

Snapshot creation time determines isolation level

Row versions accumulate, so periodic vacuuming is needed

12

Practice

1. Create a table with one row.
2. Start the first transaction and query the table.
3. In the second session, delete the row and commit the changes.
4. How many rows will the first transaction see by running the

same query again? Check it out.
5. Complete the first transaction.
6. Repeat the same thing, but now let the transaction work at the

Repeatable Read isolation level:

BEGIN ISOLATION LEVEL REPEATABLE READ;

Explain the differences.

