

Introduction

We have written this small book for those who only start
getting acquainted with the world of PostgreSQL. From
this book, you will learn:

• PostgreSQL — what is it all about? p.2
• Installation on Linux and Windows p.14
• Connecting to a server, writing SQL queries,

and using transactions .p.27
• Learning SQL on a demo database p.56
• About full-text search capabilities p.85
• Working with JSON data . p.93
• Using PostgreSQL with your application p.102
• About a useful pgAdmin application p.116
• Documentation and trainings . p.124
• Keeping up with all updates . p.135
• About the Postgres Professional company p.138

We hope that our book will make your first experience
with PostgreSQL more pleasant and help you blend into
the PostgreSQL community.

A soft copy of this book is available at postgrespro.com/
education/introbook.

Good luck!

1

https://postgrespro.com/education/introbook
https://postgrespro.com/education/introbook

About PostgreSQL

PostgreSQL is the most feature-rich free open-source
DBMS. Developed in the academic environment, this DBMS
has brought together a wide developer community through
its long history. Nowadays, PostgreSQL offers all the func-
tionality required by most customers and is actively used
all over the world to create high-load business-critical
systems.

Some History

Modern PostgreSQL originates from the POSTGRES project,
which was led by Michael Stonebraker, professor of the
University of California, Berkeley. Before this work, Michael
Stonebraker had been managing INGRES development.
It was one of the first relational DBMS, and POSTGRES ap-
peared as the result of rethinking all the previous work
and the desire to overcome the limitations of its rigid
type system.

The project was started in 1985, and by 1988 a number of
scientific articles had been published that described the
data model, POSTQUEL query language (SQL was not an

2

accepted standard at the time), and data storage struc-
ture.

POSTGRES is sometimes considered to be a so-called
post-relational DBMS. Relational model restrictions had
always been criticized, being the flip side of its strictness
and simplicity. However, the spread of computer technol-
ogy in all spheres of life demanded new applications, and
the databases had to support new data types and such
features as inheritance or creating and managing com-
plex objects.

The first version of this DBMS appeared in 1989. The data-
base was being improved for several years, but in 1993,
when version 4.2 was released, the project was shut down.
However, in spite of the official cancellation, open source
and BSD license allowed UC Berkeley alumni, Andrew Yu
and Jolly Chen, to resume its development in 1994. They
replaced POSTQUEL query language with SQL, which had
become a generally accepted standard by that time. The
project was renamed to Postgres95.

In 1996, it became obvious that the Postgres95 name
would not stand the test of time, and a new name was
selected: PostgreSQL. This name reflects the connection
between the original POSTGRES project and SQL adoption.
That’s why PostgreSQL is pronounced as “Post-Gres-Q-L,”
or simply “postgres,” but not “postgre.”

The first PostgreSQL release had version 6.0, keeping the
original numbering scheme. The project grew, and its
management was taken over by at first a small group

3

of active users and developers, which was named “Post-
greSQL Global Development Group.”

Development

The Core team of the project takes all the main decisions
about developing and releasing new PostgreSQL versions.
At the moment, the team consists of five people.

Apart from the developers who contribute to the project
from time to time, there is a group of main developers
who have made a significant contribution to PostgreSQL.
They are called major contributors. There is also a group
of committers who have the write access to the source
code repository. Group members change over time, new
developers join the community, others leave the project.
For the current list of developers, see PostgreSQL official
website: www.postgresql.org.

PostgreSQL release cycle usually takes about a year. In
this timeframe, the community receives patches with bug
fixes, updates, and new features from everyone willing
to contribute. Traditionally, all patches are discussed in
the pgsql-hackers mailing list. If the community finds the
idea useful, its implementation is correct, and the code
passes a mandatory code review by other developers, the
patch is included into the next release.

At some point, code stabilization is announced: all new
features get postponed till the next version; only bug
fixes and improvements for the already included patches

4

https://www.postgresql.org

are accepted. Within the release cycle, beta versions ap-
pear. Closer to the end of the release cycle a release
candidate is built, and soon a new major version of Post-
greSQL is released.

The major version number used to consist of two num-
bers, but in 2017 it was decided to start using a single
number. Thus, version 9.6 was followed by PostgreSQL 10,
which is the latest product version right now. The next
major release is planned for autumn 2018; it will be Post-
greSQL 11.

As the new version is being developed, developers find
and fix bugs in it. The most critical fixes are backported
to the previous versions. As the number of such fixes be-
comes significant, the community releases minor versions,
which are compatible with the corresponding major ones.
For example, version 9.6.3 contains bug fixes for 9.6, while
10.2 provides fixes for PostgreSQL 10.

Support

PostgreSQL Global Development Group supports major
releases for five years. Both support and development
are managed through mailing lists. A correctly filed bug
report has all the chances to be addressed very fast: bug
fixes are often released within 24 hours.

Apart from the community support, a number of compa-
nies all over the world provide 24x7 commercial support

5

for PostgreSQL, including Russia-based Postgres Profes-
sional (www.postgrespro.com).

Current State

PostgreSQL is one of the most popular databases. Based
on the solid foundation of academic development, over
its 20-year history PostgreSQL has evolved into an enter-
prise-level DBMS that is now a real alternative to com-
mercial databases. You can see it for yourself by looking
at the key features of PostgreSQL 10, which is the latest
released version right now.

Reliability and Stability

Reliability is especially important in enterprise-level ap-
plications that handle business-critical data. For this pur-
pose, PostgreSQL provides support for hot standby servers,
point-in-time recovery, different types of replication (syn-
chronous, asynchronous, cascade).

Security

PostgreSQL supports secure SSL connections and provides
various authentication methods, including password au-
thentication, client certificates, and external authentica-
tion services (LDAP, RADIUS, PAM, Kerberos).

6

https://www.postgrespro.com

For user management and database access control, the
following features are provided:

• Creating and managing new users and group roles

• User- and role-based access control to database
objects

• Row-level and column-level security

• SELinux support via a built-in SE-PostgreSQL func-
tionality (Mandatory Access Control)

Conformance to the SQL Standard

As the ANSI SQL standard evolved, its support was con-
stantly being added to PostgreSQL. This is true for all
versions of the standard: SQL-92, SQL:1999, SQL:2003,
SQL:2008, SQL:2011. JSON support, which was standard-
ized in SQL:2016, is planned for PostgreSQL 11. In gen-
eral, PostgreSQL provides a high rate of standard confor-
mance, supporting 160 out of 179 mandatory features,
as well as many optional ones.

Transaction Support

PostgreSQL provides full support for ACID properties and
ensures effective transaction isolation using the multi-
version concurrency control method (MVCC). This method
allows to avoid locking in all cases except for concurrent
updates of the same row by different processes. Reading

7

transactions never block writing ones, and writing never
blocks reading. This is true even for the strictest serial-
izable isolation level. Using an innovative Serializable
Snapshot Isolation system, this level ensures that there
are no serialization anomalies and guarantees that con-
current transaction execution leads to the same result as
one of possible sequential executions.

For Application Developers

Application developers get a rich toolset for creating ap-
plications of any type:

• Support for various server programming languages:
built-in PL/pgSQL (which is closely integrated with
SQL), C for performance-critical tasks, Perl, Python,
Tcl, as well as JavaScript, Java, and more.

• APIs to access DBMS from applications written in
any language, including the standard ODBC and
JDBC APIs.

• A selection of database objects that allow to effec-
tively implement the logic of any complexity on the
server side: tables and indexes, integrity constraints,
views and materialized views, sequences, partition-
ing, subqueries and with-queries (including recur-
sive ones), aggregate and window functions, stored
functions, triggers, etc.

8

• Built-in flexible full-text search system with support
for all the European languages (including Russian),
extended with effective index access methods.

• Support for semi-structured data, similar to NoSQL
databases: hstore storage for key/value pairs, xml,
json (both in text representation and in an effective
binary jsonb representation).

• Foreign Data Wrappers. This feature allows to add
new data sources as external tables by the SQL/MED
standard. You can use any major DBMS as an exter-
nal data source. PostgreSQL provides full support for
foreign data, including write access and distributed
query execution.

Scalability and Performance

PostgreSQL takes advantage of the modern multi-core
processor architecture. Its performance grows almost lin-
early as the number of cores increases.

Starting from version 9.6, PostgreSQL enables concurrent
data processing, which now supports parallel reads (in-
cluding index scans), joins, and data aggregation. These
features allow to use hardware resources more effectively
to speed up queries.

9

Query Planner

PostgreSQL uses a cost-based query planner. Using the
collected statistics and taking into account both disk op-
erations and CPU time in its mathematical models, the
planner can optimize most complex queries. It can use all
access methods and join types available in state-of-the-
art commercial DBMS.

Indexing

PostgreSQL provides various index methods. Apart from
the traditional B-trees, you can use the following meth-
ods:

• GiST: a generalized balanced search tree. This ac-
cess method can be used for the data that cannot
be normalized. For example, R-trees to index points
on a surface that support k-nearest neighbors (k-NN)
search, or indexing overlapping intervals.

• SP-GiST: a generalized non-balanced search tree
based on dividing the search range into non-inter-
secting nested partitions. For example, quad-trees
and radix trees.

• GIN: generalized inverted index. It is mainly used in
full-text search to find documents that contain the
word used in the search query. Another example is
search in data arrays.

10

• RUM: an enhancement of the GIN method for full-
text search. Available as an extension, this index
type can speed up phrase search and return the re-
sults sorted by relevance.

• BRIN: a small index providing a trade-off between
the index size and search efficiency. It is useful for
big clustered tables.

• Bloom: an index based on Bloom filter (it appeared
in PostgreSQL 9.6). Having a compact representa-
tion, this index can quickly filter out non-matching
tuples, but requires re-checking of the remaining
ones.

Thanks to extensibility, new index access methods con-
stantly appear.

Many index types can be built upon both a single col-
umn and multiple columns. Regardless of the type, you
can also build indexes on arbitrary expressions, as well
as create partial indexes for specific rows only. Covering
indexes can speed up queries as all the required data is
retrieved from the index itself, avoiding heap access.

Multiple indexes can be automatically combined using
bitmaps, which can speed up index access.

Cross-Platform Support

PostgreSQL runs on Unix operating systems (including
server and client Linux distributions), FreeBSD, Solaris,
macOS, as well as Windows systems.

11

Its portable open-source C code allows to build Post-
greSQL on a variety of platforms, even if there is no pack-
age supported by the community.

Extensibility

One of the main advantages of PostgreSQL architecture
is extensibility. Without changing the core system code,
users can add the following features:

• Data types

• Functions and operators to work with new data
types

• Index access methods

• Server programming languages

• Foreign Data Wrappers (FDW)

• Loadable extensions

Full-fledged support of extensions enables you to de-
velop new features of any complexity that can be in-
stalled on demand, without changing PostgreSQL core.
For example, the following complex systems are built as
extensions:

• CitusDB implements data distribution between dif-
ferent PostgreSQL instances (sharding) and mas-
sively parallel query execution.

• PostGIS provides a geo-information data processing
system.

12

The standard PostgreSQL 10 package alone includes about
fifty extensions that have proved to be useful and reli-
able.

Availability

PostgreSQL license allows unlimited use of this DBMS,
code modification, as well as integration of PostgreSQL
into other products, including commercial and closed-
source software.

Independence

PostgreSQL does not belong to any company; it is devel-
oped by the international community, which includes de-
velopers from all over the world. It means that systems
using PostgreSQL do not depend on a particular vendor,
thus keeping the investment in all circumstances.

13

Installation and Quick Start

What is required to get started with PostgreSQL? In this
chapter, we’ll explain how to install and manage Post-
greSQL service, and then show how to set up a simple
database and create tables in it. We will also cover the
basics of the SQL language, which is used for data queries.
It’s a good idea to start trying SQL commands while you
are reading this chapter.

We recommend using Postgres Pro Standard 10 distribu-
tion developed by the Postgres Professional company. It
is fully compatible with vanilla PostgreSQL, but includes
several additional extensions. Quite often, this distribu-
tion also includes some features expected to be included
into PostgreSQL before its official release. Please note
that Postgres Pro license differs from the PostgreSQL one.

All examples in this book will also work with vanilla Post-
greSQL, which can be installed from the community web-
site or your package repository.

Let’s get started. Depending on your operating system,
PostgreSQL installation and setup will differ. If you are
using Windows, read on; for Linux-based Debian or Ubuntu
systems, go to p. 22.

14

For other operating systems, you can view installation in-
structions online: postgrespro.com/products/download.

If there is no distribution for your operating system, use
vanilla PostgreSQL. Its installation instructions are avail-
able at www.postgresql.org/download.

Windows

Installation

Download the DBMS installer from our website:
postgrespro.com/products/postgrespro/download/

latest.

Depending on your Windows version, choose the 32- or
64-bit installer. Launch the downloaded file and select
the installation language.

The Installer provides a conventional wizard interface:
you can simply keep clicking the “Next” button if you
are fine with the default options. Let’s examine the main
steps.

15

https://postgrespro.com/products/download
https://www.postgresql.org/download
https://postgrespro.com/products/postgrespro/download/latest
https://postgrespro.com/products/postgrespro/download/latest

Choose components:

Keep both options selected if you are uncertain which
one to choose.

16

Installation folder:

By default, Postgres Pro server is installed into
C:\Program Files\PostgrePro\10 (or C:\Program Files

(x86)\PostgrePro\10 for the 32-bit version on a 64-bit
system).

17

You can also specify the directory to store the databases.
This directory will hold all the information stored in DBMS,
so make sure you have enough disk space if you are plan-
ning to keep a lot of data.

18

Server options:

If you are planning to store your data in a language other
than English, make sure to choose the corresponding lo-
cale (or leave the “OS Setting” option, if your Windows
locale settings are configured appropriately).

Enter and confirm the password for the postgres DBMS
user (i.e., the database superuser). You should also select
the “Set up environment variables” checkbox to connect
to Postgres Pro server on behalf of the current OS user.

You can leave the default settings in all the other fields.

19

If you are planning to install Postgres Pro for educational
purposes only, you can select the “Use the default set-
tings” option for DBMS to take up less RAM.

Managing the Service and the Main Files

When Postgres Pro is installed, the “postgrepro-X64-10”
service is registered in your system (on 32-bit systems, it
is “postgrespro-X86-10”). This service is launched auto-
matically at the system startup under the Network Service
account. If required, you can change the service settings
using the standard Windows options.

20

To temporarily stop the database server service, run the
“Stop Server” program from the Start menu subfolder that
you have selected at installation time:

To start the service, you can run the “Start Server” pro-
gram from the same folder.

If an error occurs at the service startup, you can view the
server log to find out its cause. The log file is located
in the “log” subdirectory of the database directory cho-
sen at the installation time (typically, it is C:\Program
Files\PostgresPro\10\data\log). Logging is regularly
switched to a new file. You can find the required file ei-
ther by the last modified date, or by the filename that
includes the date and time of the switchover to this file.

There are several important configuration files that define
server settings. They are located in the database direc-
tory. There is no need to modify them to get started with
PostgreSQL, but you’ll definitely need them in real work:

21

• postgresql.conf is the main configuration file that
contains server parameters.

• pg_hba.conf defines the access configuration. For
security reasons, the access must be confirmed by a
password and is only allowed from the local system
by default.

Take a look at these files, they are fully documented.

Now we are ready to connect to the database and try out
some commands and SQL queries. Go to the chapter “Try-
ing SQL” on p. 27.

Debian and Ubuntu

Installation

If you are using Linux, you need to add our company’s
repository first:

For Debian OS (currently supported versions are 7 “Wheezy,”
8 “Jessie,” and 9 “Stretch”), run the following commands in
the console window:

$ sudo apt-get install lsb-release

$ sudo sh -c 'echo "deb \
http://repo.postgrespro.ru/pgpro-10/debian \
$(lsb_release -cs) main" > \
/etc/apt/sources.list.d/postgrespro.list'

22

For Ubuntu OS (currently supported versions are 14.04
“Trusty,” 16.04 “Xenial,” 17.10 “Artful”, and 18.04 “Bionic”),
you should use a little bit different commands:

$ sudo sh -c 'echo "deb \
http://repo.postgrespro.ru/pgpro-10/ubuntu \
$(lsb_release -cs) main" > \
/etc/apt/sources.list.d/postgrespro.list'

Further steps are the same on both systems:

$ wget --quiet -O - http://repo.postgrespro.ru/pgpro-
10/keys/GPG-KEY-POSTGRESPRO | sudo apt-key add -

$ sudo apt-get update

Before starting the installation, check localization set-
tings:

$ locale

If you plan to store data in a language other than En-
glish, the LC_CTYPE and LC_COLLATE variables must be
set appropriately. For example, for the French language,
make sure to set these variables to “fr_FR.UTF8”:

$ export LC_CTYPE=fr_FR.UTF8

$ export LC_COLLATE=fr_FR.UTF8

You should also make sure that the operating system has
the required locale installed:

23

$ locale -a | grep fr_FR

fr_FR.utf8

If it’s not the case, generate the locale, as follows:

$ sudo locale-gen fr_FR.utf8

Now you can start the installation. The distribution offers
you two installation options: quick installation and setup
in a fully automated way, or custom installation that al-
lows picking and choosing the required packages, but
requires a manual system setup. For simplicity, let’s go
for the first option provided by the postgrespro-std-10

package:

$ sudo apt-get install postgrespro-std-10

To avoid possible conflicts, do not use this option if you
already have a PostgreSQL instance installed on your sys-
tem. To learn how to install Postgres Pro together with
PostgreSQL, refer to the detailed installation instructions
at postgrespro.com/docs/postgrespro/10/binary-
installation-on-linux.

Once the installation command completes, Postgres Pro
DBMS will be installed and launched. To check that the
server is ready to use, run:

$ sudo -u postgres psql -c 'select now()'

If all went well, the current time is returned.

24

https://postgrespro.com/docs/postgrespro/10/binary-installation-on-linux
https://postgrespro.com/docs/postgrespro/10/binary-installation-on-linux

Managing the Service and the Main Files

When Postgres Pro is installed, a special postgres user is
created automatically on your system. All the server pro-
cesses work on behalf of this user. All DBMS files belong
to this user as well. Postgres Pro will be started auto-
matically at the operating system boot. It’s not a prob-
lem with the default settings: if you are not working with
the database server, it consumes very little of system re-
sources. If you decide to turn off the autostart, run:

$ sudo pg-setup service disable

To temporarily stop the database server service, enter:

$ sudo service postgrespro-std-10 stop

You can launch the server service as follows:

$ sudo service postgrespro-std-10 start

To get the full list of available commands, enter:

$ sudo service postgrespro-std-10

If an error occurs at the service startup, you can find the
details in the server log. As a rule, you can get the latest
log messages by running the following command:

$ sudo journalctl -xeu postgrespro-std-10

25

On some older versions of the operating systems, you
may have to view the log file /var/lib/pgpro/std-10/

pgstartup.log.

All information to be stored in the database is located in
the /var/lib/pgpro/std-10/data/ directory in the file
system. If you are going to store a lot of data, make sure
that you have enough disk space.

There are several configuration files that define server
settings. There’s no need to configure them to get started,
but it’s worth checking them out since you’ll definitely
need them in the future:

• /var/lib/pgpro/std-10/data/postgresql.conf

is the main configuration file that contains server
parameters.

• /var/lib/pgpro/std-10/data/pg_hba.conf de-
fines access settings. For security reasons, the ac-
cess is only allowed from the local system on behalf
of the postgres OS user by default.

Now it’s time to connect to the database and try out SQL.

26

Trying SQL

Connecting via psql

To connect to the DBMS server and start executing com-
mands, you need to have a client application. In the “Post-
greSQL for Applications” chapter, we will talk about how
to send queries from applications written in different pro-
gramming languages. And here we’ll explain how to work
with the psql client from the command line in the inter-
active mode.

Unfortunately, many people are not very fond of the com-
mand line nowadays. Why does it make sense to learn
how to work in it?

First of all, psql is a standard client application included
into all PostgreSQL packages, so it’s always available. No
doubt, it’s good to have a customized environment, but
there is no need to get lost on an unknown system.

Secondly, psql is really convenient for everyday DBA tasks,
writing small queries, and automating processes. For ex-
ample, you can use it to periodically deploy application
code updates on your DBMS server. The psql client pro-
vides its own commands that can help you find your way

27

around the database objects and display the data stored
in tables in a convenient format.

However, if you are used to working in graphical user
interfaces, try pgAdmin (we’ll touch upon it below) or
other similar products: wiki.postgresql.org/wiki/
Community_Guide_to_PostgreSQL_GUI_Tools.

To start psql on a Linux system, run this command:

$ sudo -u postgres psql

On Windows, open the Start menu and launch the “SQL
Shell (psql)” program from the PostgreSQL installation
folder:

When prompted, enter the password for the postgres

user that you set when installing PostgreSQL.

Windows users may run into encoding issues with non-
English characters in the terminal. If you see garbled

28

http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools
http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools

symbols instead of letters, make sure that a TrueType font
is selected in the properties of the terminal window (typi-
cally, “Lucida Console” or “Consolas”).

As a result, you should see the same prompt on both op-
erating systems: postgres=#. In this prompt, “postgres”
is the name of the database to which you are connected
right now. A single PostgreSQL server can host several
databases, but you can only work with one of them at a
time.

In the sections below, we’ll provide some command-line
examples. Enter only the part printed in bold; the prompt
and the system response are provided solely for your con-
venience.

Database

Let’s create a new database called test:

postgres=# CREATE DATABASE test;

CREATE DATABASE

Don’t forget to use a semicolon at the end of the com-
mand: PostgreSQL expects you to continue typing until
you enter this symbol, so you can split the command over
multiple lines.

Now let’s connect to the created database:

postgres=# \c test

29

You are now connected to database "test" as user
"postgres".

test=#

As you can see, the command prompt has changed to
test=#.

The command that we’ve just entered does not look like
SQL, as it starts with a backslash. This is a convention for
special commands that can only be used in psql (so if
you are using pgAdmin or another GUI tool, skip all com-
mands starting with a backslash, or try to find an equiva-
lent).

There are quite a few psql commands, and we’ll use
some of them a bit later. To get the full list of psql com-
mands right now, you can run:

test=# \?

Since the reference information is quite bulky, it will be
displayed in a pager program of your operating system,
which is usually more or less.

Tables

Relational database management systems present data
as tables. The heading of the table defines its columns;
the data itself is stored in table rows. The data is not or-
dered. In particular, you cannot extract data rows in the
order they were added to the table.

30

For each column, a data type is defined. All the values in
the corresponding row fields must conform to this type.
You can use multiple built-in data types provided by Post-
greSQL (postgrespro.com/doc/datatype.html), or add
your own custom types. Here we’ll cover just a few main
ones:

• integer

• text

• boolean, which is a logical type taking true or
false values

Apart from regular values defined by the data type, a field
can have an undefined marker NULL. It can be interpreted
as “the value is unknown” or “the value is not set.”

Let’s create a table of university courses:

test=# CREATE TABLE courses(
test(# c_no text PRIMARY KEY,
test(# title text,
test(# hours integer
test(#);

CREATE TABLE

Note that the psql command prompt has changed: it is
a hint that the command continues on the new line. (For
convenience, we will not repeat the prompt on each line
in the examples that follow.)

The above command creates the courses table with three
columns:

31

https://postgrespro.com/doc/datatype.html

• c_no defines the course number represented as a
text string.

• title provides the course title.

• hourslists an integer number of lecture hours.

Apart from columns and data types, we can define in-
tegrity constraints that will be checked automatically:
PostgreSQL won’t allow invalid data in the database. In
this example, we have added the PRIMARY KEY constraint
for the c_no column. It means that all values in this col-
umn must be unique, and NULLs are not allowed. Such
a column can be used to distinguish one table row from
another. For the full list of constraints, see
postgrespro.com/doc/ddl-constraints.html.

You can find the exact syntax of the CREATE TABLE com-
mand in documentation, or view command-line help right
in psql:

test=# \help CREATE TABLE

Such reference information is available for each SQL com-
mand. To get the full list of SQL commands, run \help

without arguments.

Filling Tables with Data

Let’s insert some rows into the created table:

32

http://postgrespro.com/doc/ddl-constraints.html

test=# INSERT INTO courses(c_no, title, hours)
VALUES ('CS301', 'Databases', 30),

('CS305', 'Networks', 60);

INSERT 0 2

If you need to perform a bulk data upload from an exter-
nal source, the INSERT command is not the best choice.
Instead, you can use the COPY command, which is specif-
ically designed for this purpose: postgrespro.com/doc/
sql-copy.html.

We’ll need two more tables for further examples: stu-
dents and exams. For each student, we are going to store
their name and the year of admission (start year). The
student ID card number will serve as the student’s identi-
fier.

test=# CREATE TABLE students(
s_id integer PRIMARY KEY,
name text,
start_year integer

);

CREATE TABLE

test=# INSERT INTO students(s_id, name, start_year)
VALUES (1451, 'Anna', 2014),

(1432, 'Victor', 2014),
(1556, 'Nina', 2015);

INSERT 0 3

Each exam should have the score received by students
in the corresponding course. Thus, students and courses
are connected by the many-to-many relationship: each

33

https://postgrespro.com/doc/sql-copy.html
https://postgrespro.com/doc/sql-copy.html

student can take exams in multiple courses, and each
exam can be taken by multiple students.

Each table row is uniquely identified by the combination
of a student name and a course number. Such integrity
constraint pertaining to several columns at once is de-
fined by the CONSTRAINT clause:

test=# CREATE TABLE exams(
s_id integer REFERENCES students(s_id),
c_no text REFERENCES courses(c_no),
score integer,
CONSTRAINT pk PRIMARY KEY(s_id, c_no)

);
CREATE TABLE

Besides, using the REFERENCES clause, we have defined
two referential integrity checks, called foreign keys. Such
keys show that the values of one table reference rows of
another table. When any action is performed on the data-
base, DBMS will now check that all s_id identifiers in the
exams table correspond to real students (that is, entries
in the students table), while course numbers in c_no cor-
respond to real courses. Thus, it is impossible to assign
a score on a non-existing subject or to a non-existent
student, regardless of the user actions or possible appli-
cation errors.

Let’s assign several scores to our students:

test=# INSERT INTO exams(s_id, c_no, score)
VALUES (1451, 'CS301', 5),

(1556, 'CS301', 5),
(1451, 'CS305', 5),
(1432, 'CS305', 4);

INSERT 0 4

34

Data Retrieval

Simple Queries

To read data from tables, use the SELECT operator. For
example, let’s display two columns of the courses table:

test=# SELECT title AS course_title, hours
FROM courses;

course_title | hours
--------------+-------
Databases | 30
Networks | 60
(2 rows)

The AS clause allows to rename the column, if required.

To display all the columns, simply use the * symbol:

test=# SELECT * FROM courses;

c_no | title | hours
-------+-------------+-------
CS301 | Databases | 30
CS305 | Networks | 60
(2 rows)

The result can contain several rows with the same data.
Even if all rows in the original table are different, the
data can appear duplicated if not all the columns are dis-
played:

35

test=# SELECT start_year FROM students;

start_year

2014
2014
2015

(3 rows)

To select all different start years, specify the DISTINCT

keyword after SELECT:

test=# SELECT DISTINCT start_year FROM students;

start_year

2014
2015

(2 rows)

For details, see documentation: postgrespro.com/doc/
sql-select.html#SQL-DISTINCT

In general, you can use any expressions after the SELECT

operator. If you omit the FROM clause, the resulting table
will contain a single row. For example:

test=# SELECT 2+2 AS result;

result

4
(1 row)

When you select some data from a table, it is usually
required to return only those rows that satisfy a certain
condition. This filtering condition is written in the WHERE

clause:

36

https://postgrespro.com/doc/sql-select.html#SQL-DISTINCT
https://postgrespro.com/doc/sql-select.html#SQL-DISTINCT

test=# SELECT * FROM courses WHERE hours > 45;

c_no | title | hours
-------+----------+-------
CS305 | Networks | 60
(1 row)

The condition must be of a logical type. For example, it
can contain relations =, <> (or !=), >, >=, <, <=, as well as
combine simple conditions using logical operations AND,
OR, NOT, and parenthesis (like in regular programming lan-
guages).

Handling NULLs is a bit more subtle. The resulting table
can contain only those rows for which the filtering condi-
tion is true; if the condition is false or undefined, the row
is excluded.

Remember:

• The result of comparing something to NULL is unde-
fined.

• The result of logical operations on NULL is usu-
ally undefined (exceptions: true OR NULL = true,
false AND NULL = false).

• The following special conditions are used to check
whether the value is undefined: IS NULL (IS NOT

NULLl) and IS DISTINCT FROM (IS NOT DISTINCT

FROM).
It may also be convenient to use the coalesce

function.

You can find more details in documentation:
postgrespro.com/doc/functions-comparison.html

37

https://postgrespro.com/doc/functions-comparison.html

Joins

A well-designed database should not contain redundant
data. For example, the exams table must not contain stu-
dent names, as this information can be found in another
table by the number of the student ID card.

For this reason, to get all the required values in a query,
it is often necessary to join the data from several tables,
specifying all table names in the FROM clause:

test=# SELECT * FROM courses, exams;

c_no | title | hours | s_id | c_no | score
-------+-------------+-------+------+-------+-------
CS301 | Databases | 30 | 1451 | CS301 | 5
CS305 | Networks | 60 | 1451 | CS301 | 5
CS301 | Databases | 30 | 1556 | CS301 | 5
CS305 | Networks | 60 | 1556 | CS301 | 5
CS301 | Databases | 30 | 1451 | CS305 | 5
CS305 | Networks | 60 | 1451 | CS305 | 5
CS301 | Databases | 30 | 1432 | CS305 | 4
CS305 | Networks | 60 | 1432 | CS305 | 4
(8 rows)

This result is called the direct or Cartesian product of ta-
bles: each row of one table is appended to each row of
the other table.

As a rule, you can get a more useful and informative re-
sult if you specify the join condition in the WHERE clause.

Let’s get all scores for all courses, matching courses to
exams in this course:

38

test=# SELECT courses.title, exams.s_id, exams.score
FROM courses, exams
WHERE courses.c_no = exams.c_no;

title | s_id | score
-------------+------+-------
Databases | 1451 | 5
Databases | 1556 | 5
Networks | 1451 | 5
Networks | 1432 | 4
(4 rows)

Another way to join tables is to explicitly use the the
JOIN keyword. Let’s display all students and their scores
for the “Networks” course:

test=# SELECT students.name, exams.score
FROM students
JOIN exams

ON students.s_id = exams.s_id
AND exams.c_no = 'CS305';

name | score
--------+-------
Anna | 5
Victor | 4
(2 rows)

From the DBMS point of view, both queries are equivalent,
so you can use any approach that seems more natural.

In this example, the result does not include the rows of
the original table that do not have a pair in the other
table: although the condition is applied to the subjects,
the students that did not take an exam in this subject
are also excluded. To include all students into the result,
regardless of whether they took this exam, use the outer
join:

39

test=# SELECT students.name, exams.score
FROM students
LEFT JOIN exams

ON students.s_id = exams.s_id
AND exams.c_no = 'CS305';

name | score
--------+-------
Anna | 5
Victor | 4
Nina |
(3 rows)

Note that the rows from the left table that don’t have
a counterpart in the right table are added to the result
(that’s why the operation is called LEFT JOIN). The corre-
sponding values in the right table are undefined in this
case.

The WHERE condition is applied to the result of the join
operation. Thus, if you specify the subject restriction out-
side of the join condition, Nina will be excluded from the
result because the corresponding exams.c_no is unde-
fined:

test=# SELECT students.name, exams.score
FROM students
LEFT JOIN exams ON students.s_id = exams.s_id
WHERE exams.c_no = 'CS305';

name | score
--------+-------
Anna | 5
Victor | 4
(2 rows)

40

Don’t be afraid of joins. It is a common operation for
database management systems, and PostgreSQL has a
whole range of effective mechanisms to perform it. Do
not join data at the application level, let the database
server do the job. The server can handle this task very
well.

You can find more details in documentation:
postgrespro.com/doc/sql-select.html#SQL-FROM

Subqueries

The SELECT operation returns a table, which can be dis-
played as the query result (as we have already seen) or
used in another SQL query. Such a nested SELECT com-
mand in parentheses is called a subquery.

If a subquery returns a single row and a single column,
you can use it as a regular scalar expression:

test=# SELECT name,
(SELECT score
FROM exams
WHERE exams.s_id = students.s_id
AND exams.c_no = 'CS305')

FROM students;

name | score
--------+-------
Anna | 5
Victor | 4
Nina |
(3 rows)

41

https://postgrespro.com/doc/sql-select.html#SQL-FROM

If a subquery used in the list of SELECT expressions does
not contain any rows, NULL is returned (as in the last row
of the sample result above).

Such scalar subqueries can be also used in filtering con-
ditions. Let’s get all exams taken by the students who
have been enrolled since 2014:

test=# SELECT *
FROM exams
WHERE (SELECT start_year

FROM students
WHERE students.s_id = exams.s_id) > 2014;

s_id | c_no | score
------+-------+-------
1556 | CS301 | 5
(1 row)

You can also add filtering conditions to subqueries re-
turning an arbitrary number of rows. SQL offers several
predicates for this purpose. For example, IN checks whether
the table returned by the subquery contains the specified
value.

Let’s display all students who have any scores in the spec-
ified course:

test=# SELECT name, start_year
FROM students
WHERE s_id IN (SELECT s_id

FROM exams
WHERE c_no = 'CS305');

name | start_year
--------+------------
Anna | 2014
Victor | 2014
(2 rows)

42

There is also the NOT IN form of this predicate that re-
turns the opposite result. For example, the following
query returns the list of students who got only excellent
scores (that is, who didn’t get any lower scores):

test=# SELECT name, start_year
FROM students
WHERE s_id NOT IN (SELECT s_id

FROM exams
WHERE score < 5);

name | start_year
------+------------
Anna | 2014
Nina | 2015
(2 rows)

Another option is to use the EXISTS predicate, which
checks that the subquery returns at least one row. With
the help of this predicate, you can rewrite the previous
query as follows:

test=# SELECT name, start_year
FROM students
WHERE NOT EXISTS (SELECT s_id

FROM exams
WHERE exams.s_id = students.s_id
AND score < 5);

name | start_year
------+------------
Anna | 2014
Nina | 2015
(2 rows)

You can find more details in documentation:
postgrespro.com/doc/functions-subquery.html

43

https://postgrespro.com/doc/functions-subquery.html

In the examples above, we appended table names to col-
umn names to avoid ambiguity. However, it may be insuf-
ficient. For example, the same table can be used in the
query twice, or we can use a nameless subquery instead
of the table in the FROM clause. In such cases, you can
specify an arbitrary name after the query, which is called
an alias. You can use aliases for regular tables as well.

Let’s display student names and their scores for the “Data-
bases” course:

test=# SELECT s.name, ce.score
FROM students s
JOIN (SELECT exams.*

FROM courses, exams
WHERE courses.c_no = exams.c_no
AND courses.title = 'Databases') ce

ON s.s_id = ce.s_id;

name | score
------+-------
Anna | 5
Nina | 5
(2 rows)

Here “s” is a table alias, while “ce” is a subquery alias.
Aliases are usually chosen to be short, but comprehen-
sive.

The same query can be written without subqueries. For
example:

test=# SELECT s.name, e.score
FROM students s, courses c, exams e
WHERE c.c_no = e.c_no
AND c.title = 'Databases'
AND s.s_id = e.s_id;

44

Sorting

As we have already mentioned, table data is not sorted.
However, it is often important to get the rows in the re-
sult in a particular order. It can be achieved by using the
ORDER BY clause with the list of sorting expressions. After
each expression (sorting key), you can specify the sort-
ing order: ASC for ascending (used by default), DESC for
descending.

test=# SELECT * FROM exams
ORDER BY score, s_id, c_no DESC;

s_id | c_no | score
------+-------+-------
1432 | CS305 | 4
1451 | CS305 | 5
1451 | CS301 | 5
1556 | CS301 | 5
(4 rows)

Here the rows are first sorted by score, in the ascending
order. For the same scores, the rows get sorted by stu-
dent ID card number, in the ascending order. If the first
two keys are the same, rows are sorted by the course
number, in the descending order.

It makes sense to do sorting at the end of the query,
right before getting the result; this operation is usually
useless in subqueries.

For more details, see documentation:
postgrespro.com/doc/sql-select.html#SQL-ORDERBY.

45

https://postgrespro.com/doc/sql-select.html#SQL-ORDERBY

Grouping Operations

When grouping is used, the query returns a single line
with the value calculated from the data stored in sev-
eral lines of the original tables. Together with grouping,
aggregate functions are used. For example, let’s display
the total number of exams taken, the number of students
who passed the exams, and the average score:

test=# SELECT count(*), count(DISTINCT s_id),
avg(score)
FROM exams;

count | count | avg
-------+-------+--------------------

4 | 3 | 4.7500000000000000
(1 row)

You can get similar information by the course number
using the GROUP BY clause that provides grouping keys:

test=# SELECT c_no, count(*),
count(DISTINCT s_id), vg(score)
FROM exams
GROUP BY c_no;

c_no | count | count | avg
-------+-------+-------+--------------------
CS301 | 2 | 2 | 5.0000000000000000
CS305 | 2 | 2 | 4.5000000000000000
(2 rows)

For the full list of aggregate functions, see
postgrespro.com/doc/functions-aggregate.html.

In queries that use grouping, you may need to filter the
rows based on the aggregation results. You can define

46

https://postgrespro.com/doc/functions-aggregate.html

such conditions in the HAVING clause. While the WHERE

conditions are applied before grouping (and can use the
columns of the original tables), the HAVING conditions
take effect after grouping (so they can also use the columns
of the resulting table).

Let’s select the names of students who got more than
one excellent score (5), in any course:

test=# SELECT students.name
FROM students, exams
WHERE students.s_id = exams.s_id AND exams.score = 5
GROUP BY students.name
HAVING count(*) > 1;

name

Anna
(1 row)

You can find more details in documentation:
postgrespro.ru/doc/sql-select.html#SQL-GROUPBY.

Changing and Deleting Data

The table data is changed using the UPDATE operator,
which specifies new field values for rows defined by the
WHERE clause (like for the SELECT operator).

For example, let’s increase the number of lecture hours
for the “Databases” course two times:

test=# UPDATE courses
SET hours = hours * 2
WHERE c_no = 'CS301';

47

https://postgrespro.ru/doc/sql-select.html#SQL-GROUPBY

UPDATE 1

You can find more details in documentation:
postgrespro.com/doc/sql-update.html.

Similarly, the DELETE operator deletes the rows defined by
the WHERE clause:

test=# DELETE FROM exams WHERE score < 5;

DELETE 1

You can find more details in documentation:
postgrespro.com/doc/sql-delete.html.

Transactions

Let’s extend our database schema a little bit and dis-
tribute our students between groups. Each group must
have a monitor: a student of the same group responsi-
ble for the students’ activities. To complete this task, let’s
create a table for these groups:

test=# CREATE TABLE groups(
g_no text PRIMARY KEY,
monitor integer NOT NULL REFERENCES students(s_id)

);

CREATE TABLE

48

https://postgrespro.com/doc/sql-update.html
https://postgrespro.com/doc/sql-delete.html

Here we have applied the NOT NULL constraint, which for-
bids using undefined values.

Now we need another field in the students table, of which
we didn’t think in advance: the group number. Luckily, we
can add a new column into the already existing table:

test=# ALTER TABLE students
ADD g_no text REFERENCES groups(g_no);

ALTER TABLE

Using the psql command, you can always view which
fields are defined in the table:

test=# \d students

Table "public.students"
Column | Type | Modifiers

------------+---------+----------
s_id | integer | not null
name | text |
start_year | integer |
g_no | text |
...

You can also get the list of all tables available in the
database:

test=# \d

List of relations
Schema | Name | Type | Owner
--------+----------+-------+----------
public | courses | table | postgres
public | exams | table | postgres
public | groups | table | postgres
public | students | table | postgres
(4 rows)

49

Now let’s create a group “A-101” and move all students
into this group, making Anna its monitor.

Here we run into an issue. On the one hand, we cannot
create a group without a monitor. On the other hand, how
can we appoint Anna the monitor if she is not a member
of the group yet? It would lead to logically incorrect, in-
consistent data being stored in the database, even if for a
short period of time.

We have come across a situation when two operations
must be performed simultaneously, as none of them makes
any sense without the other. Such operations constituting
an indivisible logical unit of work are called a transaction.

So let’s start our transaction:

test=# BEGIN;

BEGIN

Next, we need to add a new group, together with its mon-
itor. Since we don’t remember Anna’s student ID, we’ll use
a query right inside the command that adds new rows:

test=# INSERT INTO groups(g_no, monitor)
SELECT 'A-101', s_id
FROM students
WHERE name = 'Anna';

INSERT 0 1

Now let’s open a new terminal window and launch an-
other psql process: this session will be running in paral-
lel with the first one.

50

Not to get confused, we will indent the commands of
the second session for clarity. Will this session see our
changes?

postgres=# \c test

You are now connected to database "test" as user
"postgres".

test=# SELECT * FROM groups;

g_no | monitor
------+---------
(0 rows)

No, it won’t, since the transaction is not completed yet.

To continue with our transaction, let’s move all students
to the newly created group:

test=# UPDATE students SET g_no = 'A-101';

UPDATE 3

The second session still gets consistent data, which was
already present in the database when the uncommitted
transaction started.

test=# SELECT * FROM students;

s_id | name | start_year | g_no
------+--------+------------+------
1451 | Anna | 2014 |
1432 | Victor | 2014 |
1556 | Nina | 2015 |
(3 rows)

Let’s commit all our changes to complete the transaction:

51

test=# COMMIT;

COMMIT

Finally, the second session receives all the changes made
by this transaction, as if they appeared all at once:

test=# SELECT * FROM groups;

g_no | monitor
-------+---------
A-101 | 1451
(1 row)

test=# SELECT * FROM students;

s_id | name | start_year | g_no
------+--------+------------+-------
1451 | Anna | 2014 | A-101
1432 | Victor | 2014 | A-101
1556 | Nina | 2015 | A-101
(3 rows)

It is guaranteed that several important DBMS properties
are always observed.

First of all, a transaction is executed either completely
(like in the example above), or not at all. If at least one
of the commands returns an error, or we have aborted the
transaction with the ROLLBACK command, the database
stays in the same state as before the BEGIN command.
This property is called atomicity.

Second, when the transaction is committed, all integrity
constraints must hold true, otherwise the transaction is
rolled back. Thus, the data is consistent before and after
the transaction. It gives this property its name — consis-
tency.

52

Third, as the example has shown, other users will never
see inconsistent data not yet committed by the trans-
action. This property is called isolation. Thanks to this
property, DBMS can serve multiple sessions in parallel,
without sacrificing data consistency. PostgreSQL is known
for a very effective isolation implementation: several ses-
sions can run read and write queries in parallel, without
locking each other. Locking occurs only two different pro-
cesses try to change the same row simultaneously.

And finally, durability is guaranteed: all the committed
data won’t be lost, even in case of a failure (if the data-
base is set up correctly and is regularly backed up, of
course).

These are extremely important properties, which must be
present in any relational database management system.

To learn more about transactions, see:
postgrespro.com/doc/tutorial-transactions.html

(You can find even more details here:
postgrespro.com/doc/mvcc.html).

53

https://postgrespro.com/doc/tutorial-transactions.html
https://postgrespro.com/doc/mvcc.html

Useful psql Commands

\? Command-line reference for psql.

\h SQL Reference: list of available commands or
the exact command syntax.

\x Toggles between the regular table display
(rows and columns) and an extended dis-
play (with each column printed on a separate
line). This is useful for viewing several “wide”
rows.

\l List of databases.

\du List of users.

\dt List of tables.

\di List of indexes.

\dv List of views.

\df List of functions.

\dn List of schemas.

\dx List of installed extensions.

\dp List of privileges.

\d name Detailed information about the specified ob-
ject.

\d+ name Extended detailed information about the
specified object.

\timing on Displays operator execution time.

54

Conclusion

We have only managed to cover a tiny bit of what you
need to know about DBMS, but we hope that you have
seen it for yourself that it’s not at all hard to start using
PostgreSQL. The SQL language enables you to construct
queries of various complexity, while PostgreSQL provides
an effective implementation and high-quality support of
the standard. Try it yourself and experiment!

And one more important psql command. To log out, en-
ter:

test=# \q

55

Demo Database

Description

General Information

To move on and learn more complex queries, we need
to create a more serious database (with not just three,
but eight tables) and fill it up with data. You can see
the entity-relationship diagram for the schema of such
a database on p. 57.

As the subject field, we have selected airline flights: let’s
assume we are talking about our not-yet-existing airline
company. This area must be familiar to anyone who has
ever traveled by plane; in any case, we’ll explain every-
thing here. When developing this demo database, we
tried to make the database schema as simple as possible,
without overloading it with unnecessary details, but not
too simple to allow building interesting and meaningful
queries.

56

B
o
o
ki

n
g
s

bo

ok
_r

ef
*

bo
ok

_d
at

e
*

to
ta

l_
am

ou
nt

T
ic

ke
ts

tic

ke
t_

no
*

bo
ok

_r
ef

*
pa

ss
en

ge
r_

id
*

pa
ss

en
ge

r_
na

m
e

°
co

nt
a

ct
_d

at
a

A
ir
cr

af
ts

ai

rc
ra

ft
_c

od
e

*
m

od
el

*
ra

ng
e

S
ea

ts

ai

rc
ra

ft
_c

od
e

se

at
_n

o
*

fa
re

_c
on

di
tio

ns

T
ic

ke
t_

fl
ig

h
ts

tic

ke
t_

no

fli
gh

t_
id

*
fa

re
_c

on
di

tio
ns

*
a

m
ou

nt

B
o
ar

d
in

g
_p

a
ss

es

tic

ke
t_

no

fli
gh

t_
id

*
b

oa
rd

in
g

_n
o

*
se

at
_n

o

F
li
g
h
ts

fli

gh
t_

id
*

fli
gh

t_
n

o
*

sc
he

du
le

d_
de

pa
rt

ur
e

*
sc

he
du

le
d_

ar
ri

va
l

*
de

pa
rt

ur
e_

ai
rp

or
t

*
ar

riv
al

_a
irp

or
t

*
st

at
us

*
ai

rc
ra

ft
_c

od
e

°
ac

tu
a

l_
de

pa
rt

ur
e

°
ac

tu
a

l_
ar

riv
al

A
ir
p
o
rt
s

ai

rp
or

t_
co

de
*

ai
rp

or
t_

na
m

e
*

ci
ty

*
co

or
di

na
te

s
*

tim
ez

on
e

57

So, the main enitity is a booking.

One booking can include several passengers, with a sepa-
rate ticket issued to each passenger. The passenger does
not constitute a separate entity. For simplicity, we can
assume that all passengers are unique.

Each ticket contains one or more flight segments (tick-
et_flights). Several flight segments can be included into
a single ticket in the following cases:

1. There are no direct flights between the points of
departure and destination, so a multi-leg flight is
required.

2. It’s a round-trip ticket.

Although there is no constraint in the schema, it is as-
sumed that all tickets in the booking have the same flight
segments.

Each flight goes from one airport to another. Flights with
the same flight number have the same points of depar-
ture and destination, but differ in departure date.

At flight check-in, the passenger is issued a boarding pass,
where the seat number is specified. The passenger can
check in for the flight only if this flight is included into
the ticket. The flight/seat combination must be unique to
avoid issuing two boarding passes for the same seat.

The number of seats in the aircraft and their distribution
between different travel classes depend on the specific
model of the aircraft performing the flight. It is assumed

58

that each aircraft model has only one cabin configura-
tion. Database schema does not check that seat numbers
in boarding passes have the corresponding seats in the
aircraft cabin.

In the sections that follow, we’ll describe each of the ta-
bles, as well as additional views and functions. You can
use the \d+ command to get the exact definition of any
table, including data types and column descriptions.

Bookings

To fly with our airline, passengers book the required tick-
ets in advance (book_date, which must be not earlier
than one month before the flight). The booking is iden-
tified by its number (book_ref, a six-position combination
of letters and digits).

The total_amount field stores the total price of all tick-
ets included into the booking, for all passengers.

Tickets

A ticket has a unique number (ticket_no), which consists
of 13 digits.

The ticket includes the passenger’s identity document
number (passenger_id), as well as their first and last
names (passenger_name) and contact information (con-
tact_data).

59

Note that neither the passenger ID, nor the name is per-
manent (for example, one can change the last name or
passport), so it is impossible to uniquely identify all tick-
ets of a particular passenger. For simplicity, let’s assume
that all passengers are unique.

Flight Segments

A flight segment connects a ticket with a flight and is
identified by their numbers.

Each flight segment has its price (amount) and travel class
(fare_conditions).

Flights

The natural key of the flights table consists of two
fields: the flight number flight_no and the departure
date scheduled_departure. To make foreign keys for this
table a bit shorter, a surrogate key flight_id is used as
the primary key.

A flight always connects two points: departure_airport
and arrival_airport.

60

61

There is no such entity as a “connecting flight”: if there
are no direct flights from one airport to another, the ticket
simply includes several required flight segments.

Each flight has a scheduled date and time of departure
and arrival (scheduled_departure and scheduled_arri-

val). The actual departure and arrival times (actual_de-
parture and actual_arrival) may differ: the difference
is usually not very big, but sometimes can be up to sev-
eral hours if the flight is delayed.

Flight status can take one of the following values:

• Scheduled
The flight is available for booking. It happens one
month before the planned departure date; before
that time, there is no entry for this flight in the
database.

• On Time
The flight is open for check-in (twenty-four hours
before the scheduled departure) and is not delayed.

• Delayed
The flight is open for check-in (twenty-four hours
before the scheduled departure), but is delayed.

• Departed
The aircraft has already departed and is airborne.

• Arrived
The aircraft has reached the point of destination.

• Cancelled
The flight is cancelled.

62

Airports

An airport is identified by a three-letter airport_code
and has an airport_name.

The city attribute of the airports table identifies the
airports of the same city. The table also includes coordi-
nates (longitude and latitude) and the timezone. There is
no separate entity for the city.

Boarding Passes

At the time of check-in, which opens twenty-four hours
before the scheduled departure, the passenger is issued a
boarding pass. Like the flight segment, the boarding pass
is identified by the ticket number and the flight number.

Boarding passes are assigned sequential numbers (board-
ing_no), in the order of check-ins for the flight (this num-
ber is unique only within the context of a particular flight).
The boarding pass specifies the seat number (seat_no).

Aircraft

Each aircraft model is identified by its three-digit air-
craft_code. The table also includes the name of the air-
craft model and the maximal flying distance, in kilometers
(range).

63

Seats

Seats define the cabin configuration of each aircraft model.
Each seat is defined by its number (seat_no) and has an
assigned travel class (fare_conditions): Economy, Com-
fort, or Business.

Flights View

There is a flights_v view over the flights table to pro-
vide additional information:

• details about the airport of departure
departure_airport, departure_airport_name,
departure_city,

• details about the airport of arrival
arrival_airport, arrival_airport_name, ar-
rival_city,

• local departure time
scheduled_departure_local, actual_departure_local,

• local arrival time
scheduled_arrival_local, actual_arrival_local,

• flight duration
scheduled_duration, actual_duration.

64

Routes View

The flights table contains some redundancies, which
you can use to single out route information (flight num-
ber, airports of departure and destination, aircraft model)
that does not depend on the exact flight dates.

This information constitutes the routes view. Besides,
this view shows the days_of_week array representing
days of the week on which flights are performed, and the
planned flight duration.

The “now” Function

The demo database contains a snapshot of data, similar
to a backup copy of a real system captured at some point
in time. For example, if a flight has the Departed status,
it means that the aircraft had already departed and was
airborne at the time of the backup copy.

The snapshot time is saved in the bookings.now func-
tion. You can use this function in demo queries for cases
that would require the now function in a real database.

Besides, the return value of this function determines the
version of the demo database. The latest version avail-
able at the time of this publication is of August 15, 2017.

65

Installation

Installation from the Website

The demo database is available in three flavors, which
differ only in the data size:

• edu.postgrespro.com/demo-small-en.zip

A small database with flight data for one month
(21 MB, DB size is 280 MB).

• edu.postgrespro.com/demo-medium-en.zip

A medium database with flight data for three months
(62 MB, DB size is 702 MB).

• edu.postgrespro.com/demo-big-en.zip

A large database with flight data for one year
(232 MB, DB size is 2638 MB).

The small database is good for writing queries, and it will
not take up much disk space. If you would like to con-
sider query optimization specifics, choose the large data-
base to see the query behavior on large data volumes.

The files contain a logical backup copy of the demo data-
base created with the pg_dump utility. Note that if the
demo database already exists, it will be deleted and recre-
ated as it is restored from the backup copy. The owner
of the demo database will be the DBMS user who run the
script.

To install the demo database on Linux, switch to the
postgres user and download the corresponding file. For
example, to install the small database, do the following:

66

https://edu.postgrespro.com/demo-small-en.zip
https://edu.postgrespro.com/demo-medium-en.zip
https://edu.postgrespro.com/demo-big-en.zip

$ sudo su - postgres

$ wget https://edu.postgrespro.com/demo-small-en.zip

$ zcat demo-small-en.zip | psql

On Windows, download the edu.postgrespro.com/demo-

small-en.zip file, double-click it to open the archive,
and copy the demo-small-en-20170815.sql file into the
C:\Program Files\PostgresPro10 directory.

Then launch psql (using the “SQL Shell (psql)” shortcut)
and run the following command:

postgres# \i demo-small-en-20170815.sql

If the file is not found, check the “Start in” property of
the shortcut; the file must be located in this directory.

Sample Queries

A Couple of Words about the Schema

Once the installation completes, launch psql and connect
to the demo database:

postgres=# \c demo

You are now connected to database "demo" as user
"postgres".

demo=#

67

https://edu.postgrespro.com/demo-small-en.zip
https://edu.postgrespro.com/demo-small-en.zip

All the entities we are interested in are stored in the
bookings schema. As you connect to the database, this
schema will be used automatically, so there is no need to
specify it explicitly:

demo=# SELECT * FROM aircrafts;

aircraft_code | model | range
---------------+---------------------+-------
773 | Boeing 777-300 | 11100
763 | Boeing 767-300 | 7900
SU9 | Sukhoi Superjet-100 | 3000
320 | Airbus A320-200 | 5700
321 | Airbus A321-200 | 5600
319 | Airbus A319-100 | 6700
733 | Boeing 737-300 | 4200
CN1 | Cessna 208 Caravan | 1200
CR2 | Bombardier CRJ-200 | 2700
(9 rows)

However, for the bookings.now function you still have to
specify the schema, to differentiate it from the standard
now function:

demo=# SELECT bookings.now();

now

2017-08-15 18:00:00+03
(1 row)

Cities and airports can be selected with the following
query:

demo=# SELECT airport_code, city
FROM airports LIMIT 5;

68

airport_code | city
--------------+--------------------------
YKS | Yakutsk
MJZ | Mirnyj
KHV | Khabarovsk
PKC | Petropavlovsk
UUS | Yuzhno-Sakhalinsk
(5 rows)

The content of the database is provided in English and
in Russian. You can switch between these languages by
setting the bookings.lang parameter to “en” or “ru,” re-
spectively. By default, the English language is selected.
On the session level, the bookings.lang parameter can
be set as follows:

demo=# SET bookings.lang = ru;

If you would like to define this setting globally, run the
following command:

demo=# ALTER DATABASE demo SET bookings.lang = ru;

ALTER DATABASE

Do not forget to reconnect to the database to enable the
new global setting for your session:

demo=# \c

You are now connected to database "demo" as user
"postgres".

69

If you change the language setting to Russian, the city
names will get translated into Russian:

demo=# SELECT airport_code, city
FROM airports LIMIT 5;

airport_code | city
--------------+--------------------------
YKS | Якутск
MJZ | Мирный
KHV | Хабаровск
PKC | Петропавловск-Камчатский
UUS | Южно-Сахалинск
(5 rows)

To understand how it works, you can take a look at the
aircrafts or airports definition using the \d+ psql

command.

For more information about schema management, see
postgrespro.com/doc/ddl-schemas.html.
For details on setting configuration parameters, see
postgrespro.com/doc/config-setting.html.

Simple Queries

Below we’ll provide some sample problems based on the
demo database schema. Most of them are followed by a
solution, while the rest you can solve on your own.

Problem. Who traveled from Moscow (SVO) to Novosi-
birsk (OVB) on seat 1A yesterday, and when was the ticket
booked?

70

https://postgrespro.com/doc/ddl-schemas.html
https://postgrespro.com/doc/config-setting.html

Solution. “The day before yesterday” is counted from the
booking.now value, not from the current date.

SELECT t.passenger_name,
b.book_date

FROM bookings b
JOIN tickets t

ON t.book_ref = b.book_ref
JOIN boarding_passes bp

ON bp.ticket_no = t.ticket_no
JOIN flights f

ON f.flight_id = bp.flight_id
WHERE f.departure_airport = 'SVO'
AND f.arrival_airport = 'OVB'
AND f.scheduled_departure::date =

bookings.now()::date - INTERVAL '2 day'
AND bp.seat_no = '1A';

Problem. How many seats remained free on flight PG0404
yesterday?

Solution. There are several approaches to solving this
problem. The first one uses the NOT EXISTS clause to find
the seats without the corresponding boarding passes:

SELECT count(*)
FROM flights f

JOIN seats s
ON s.aircraft_code = f.aircraft_code

WHERE f.flight_no = 'PG0404'
AND f.scheduled_departure::date =

bookings.now()::date - INTERVAL '1 day'
AND NOT EXISTS (

SELECT NULL
FROM boarding_passes bp
WHERE bp.flight_id = f.flight_id
AND bp.seat_no = s.seat_no

);

71

The second approach uses the operation of set subtrac-
tion:

SELECT count(*)
FROM (

SELECT s.seat_no
FROM seats s
WHERE s.aircraft_code = (

SELECT aircraft_code
FROM flights
WHERE flight_no = 'PG0404'
AND scheduled_departure::date =

bookings.now()::date - INTERVAL '1 day'
)
EXCEPT
SELECT bp.seat_no
FROM boarding_passes bp
WHERE bp.flight_id = (

SELECT flight_id
FROM flights
WHERE flight_no = 'PG0404'
AND scheduled_departure::date =

bookings.now()::date - INTERVAL '1 day'
)

) t;

The choice largely depends on your personal preferences.
You only have to take into account that query execution
will differ, so if performance is important, it makes sense
to try both approaches.

72

Problem. Which flights had the longest delays? Print the
list of ten “leaders.”

Solution. The query only needs to include the already de-
parted flights:

SELECT f.flight_no,
f.scheduled_departure,
f.actual_departure,
f.actual_departure - f.scheduled_departure
AS delay

FROM flights f
WHERE f.actual_departure IS NOT NULL
ORDER BY f.actual_departure - f.scheduled_departure

DESC
LIMIT 10;

The same condition can be based on the status column.

Aggregate Functions

Problem. What is the shortest flight duration for each
possible flight from Moscow to St. Petersburg, and how
many times was the flight delayed for more than an hour?

Solution. To solve this problem, it is convenient to use
the available flights_v view instead of dealing with ta-
ble joins. You need to take into account only those flights
that have already arrived.

73

SELECT f.flight_no,
f.scheduled_duration,
min(f.actual_duration),
max(f.actual_duration),
sum(CASE

WHEN f.actual_departure >
f.scheduled_departure +
INTERVAL '1 hour'

THEN 1 ELSE 0
END) delays

FROM flights_v f
WHERE f.departure_city = 'Moscow'
AND f.arrival_city = 'St. Petersburg'
AND f.status = 'Arrived'
GROUP BY f.flight_no,

f.scheduled_duration;

Problem. Find the most disciplined passengers who checked
in first for all their flights. Take into account only those
passengers who took at least two flights.

Solution. Use the fact that boarding pass numbers are
issued in the check-in order.

SELECT t.passenger_name,
t.ticket_no

FROM tickets t
JOIN boarding_passes bp

ON bp.ticket_no = t.ticket_no
GROUP BY t.passenger_name,

t.ticket_no
HAVING max(bp.boarding_no) = 1
AND count(*) > 1;

74

Problem. How many people can be included into a single
booking according to the available data?

Solution. First, let’s count the number of passengers in
each booking, and then the number of bookings for each
number of passengers.

SELECT tt.cnt,
count(*)

FROM (
SELECT t.book_ref,

count(*) cnt
FROM tickets t
GROUP BY t.book_ref

) tt
GROUP BY tt.cnt
ORDER BY tt.cnt;

Window Functions

Problem. For each ticket, display all the included flight
segments, together with connection time. Limit the result
to the tickets booked a week ago.

Solution. Use window functions to avoid accessing the
same data twice.

In the query results provided below, we can see that the
time cushion between flights is several days in some
cases. As a rule, these are round-trip tickets, that is, we
see the time of the stay in the point of destination, not
the time between connecting flights. Using the solution
for one of the problems in the “Arrays” section, you can
take this fact into account when building the query.

75

SELECT tf.ticket_no,
f.departure_airport,
f.arrival_airport,
f.scheduled_arrival,
lead(f.scheduled_departure) OVER w

AS next_departure,
lead(f.scheduled_departure) OVER w -

f.scheduled_arrival AS gap
FROM bookings b

JOIN tickets t
ON t.book_ref = b.book_ref

JOIN ticket_flights tf
ON tf.ticket_no = t.ticket_no

JOIN flights f
ON tf.flight_id = f.flight_id

WHERE b.book_date =
bookings.now()::date - INTERVAL '7 day'

WINDOW w AS (PARTITION BY tf.ticket_no
ORDER BY f.scheduled_departure);

Problem. Which combinations of first and last names oc-
cur most often? What is the ratio of the passengers with
such names to the total number of passengers?

Solution. A window function is used to calculate the total
number of passengers.

SELECT passenger_name,
round(100.0 * cnt / sum(cnt) OVER (), 2)
AS percent

FROM (
SELECT passenger_name,

count(*) cnt
FROM tickets
GROUP BY passenger_name

) t
ORDER BY percent DESC;

76

Problem. Solve the previous problem for first names and
last names separately.

Solution. Consider a query for first names:

WITH p AS (
SELECT left(passenger_name,

position(' ' IN passenger_name))
AS passenger_name

FROM tickets
)
SELECT passenger_name,

round(100.0 * cnt / sum(cnt) OVER (), 2)
AS percent

FROM (
SELECT passenger_name,

count(*) cnt
FROM p
GROUP BY passenger_name

) t
ORDER BY percent DESC;

Conclusion: do not use a single text field for different
values if you are going to use them separately; in scien-
tific terms, it is called “first normal form.”

Arrays

Problem. There is no indication whether the ticket is one-
way or round-trip. However, you can figure it out by com-
paring the first point of departure with the last point of
destination. Display airports of departure and destination
for each ticket, ignoring connections, and decide whether
it’s a round-trip ticket.

77

Solution. One of the easiest solutions is to work with an
array of airports converted from the list of airports in the
itinerary using the array_agg aggregate function. We
select the middle element of the array as the airport of
destination, assuming that the outbound and inbound
ways have the same number of stops.

WITH t AS (
SELECT ticket_no,

a,
a[1] departure,
a[cardinality(a)] last_arrival,
a[cardinality(a)/2+1] middle

FROM (
SELECT t.ticket_no,

array_agg(f.departure_airport
ORDER BY f.scheduled_departure) ||

(array_agg(f.arrival_airport
ORDER BY f.scheduled_departure DESC)

)[1] AS a
FROM tickets t

JOIN ticket_flights tf
ON tf.ticket_no = t.ticket_no

JOIN flights f
ON f.flight_id = tf.flight_id

GROUP BY t.ticket_no
) t

)
SELECT t.ticket_no,

t.a,
t.departure,
CASE

WHEN t.departure = t.last_arrival
THEN t.middle

ELSE t.last_arrival
END arrival,
(t.departure = t.last_arrival) return_ticket

FROM t;

78

In this example, the tickets table is scanned only once.
The array of airports is displayed for clarity only; for large
volumes of data, it makes sense to remove it from the
query.

Problem. Find the round-trip tickets in which the out-
bound route differs from the inbound one.

Problem. Find the pairs of airports with inbound and out-
bound flights departing on different days of the week.

Solution. The part of the problem that involves build-
ing an array of days of the week is virtually solved in the
routes view. You only have to find the intersection using
the && operator:

SELECT r1.departure_airport,
r1.arrival_airport,
r1.days_of_week dow,
r2.days_of_week dow_back

FROM routes r1
JOIN routes r2

ON r1.arrival_airport = r2.departure_airport
AND r1.departure_airport = r2.arrival_airport

WHERE NOT (r1.days_of_week && r2.days_of_week);

Recursive Queries

Problem. How can you get from Ust-Kut (UKX) to Neryun-
gri (CNN) with the minimal number of connections, and
what will the flight time be?

79

Solution. Here you have to find the shortest path in the
graph. It can be done with the following recursive query:

WITH RECURSIVE p(
last_arrival,
destination,
hops,
flights,
flight_time,
found

) AS (
SELECT a_from.airport_code,

a_to.airport_code,
array[a_from.airport_code],
array[]::char(6)[],
interval '0',
a_from.airport_code = a_to.airport_code

FROM airports a_from,
airports a_to

WHERE a_from.airport_code = 'UKX'
AND a_to.airport_code = 'CNN'
UNION ALL
SELECT r.arrival_airport,

p.destination,
(p.hops || r.arrival_airport)::char(3)[],
(p.flights || r.flight_no)::char(6)[],
p.flight_time + r.duration,
bool_or(r.arrival_airport = p.destination)

OVER ()
FROM p

JOIN routes r
ON r.departure_airport = p.last_arrival

WHERE NOT r.arrival_airport = ANY(p.hops)
AND NOT p.found

)
SELECT hops,

flights,
flight_time

FROM p
WHERE p.last_arrival = p.destination;

80

Infinite looping is prevented by checking the hops array.

Note that the breadth-first search is performed, so the
first path that is found will be the shortest one connection-
wise. To avoid looping over other paths (that can be nu-
merous), the found attribute is used, which is calculated
using the bool_or window function.

It is useful to compare this query with its simpler variant
without the found trick.

To learn more about recursive queries, see documenta-
tion: postgrespro.com/doc/queries-with.html

Problem. What is the maximum number of connections
that can be required to get from any airport to any other
airport?

Solution. We can take the previous query as the basis
for the solution. However, the first iteration must now
contain all possible airport pairs, not a single pair: each
airport must be connected to each other airport. For all
these pairs we first find the shortest path, and then select
the longest of them.

Clearly, it is only possible if the routes graph is connected.

This query also uses the found attribute, but here it should
be calculated separately for each pair of airports.

81

https://postgrespro.com/doc/queries-with.html

WITH RECURSIVE p(
departure,
last_arrival,
destination,
hops,
found

) AS (
SELECT a_from.airport_code,

a_from.airport_code,
a_to.airport_code,
array[a_from.airport_code],
a_from.airport_code = a_to.airport_code

FROM airports a_from,
airports a_to

UNION ALL
SELECT p.departure,

r.arrival_airport,
p.destination,
(p.hops || r.arrival_airport)::char(3)[],
bool_or(r.arrival_airport = p.destination)

OVER (PARTITION BY p.departure,
p.destination)

FROM p
JOIN routes r

ON r.departure_airport = p.last_arrival
WHERE NOT r.arrival_airport = ANY(p.hops)
AND NOT p.found

)
SELECT max(cardinality(hops)-1)
FROM p
WHERE p.last_arrival = p.destination;

Problem. Find the shortest route from Ust-Kut (UKX) to
Negungri (CNN) from the flight time point of view (ignor-
ing connection time).

Hint: the route may be non-optimal with regards to the
number of connections.

82

Solution.

WITH RECURSIVE p(
last_arrival,
destination,
hops,
flights,
flight_time,
min_time

) AS (
SELECT a_from.airport_code,

a_to.airport_code,
array[a_from.airport_code],
array[]::char(6)[],
interval '0',
NULL::interval

FROM airports a_from,
airports a_to

WHERE a_from.airport_code = 'UKX'
AND a_to.airport_code = 'CNN'
UNION ALL
SELECT r.arrival_airport,

p.destination,
(p.hops || r.arrival_airport)::char(3)[],
(p.flights || r.flight_no)::char(6)[],
p.flight_time + r.duration,
least(

p.min_time, min(p.flight_time+r.duration)
FILTER (

WHERE r.arrival_airport = p.destination
) OVER ()

)
FROM p

JOIN routes r
ON r.departure_airport = p.last_arrival

WHERE NOT r.arrival_airport = ANY(p.hops)
AND p.flight_time + r.duration <

coalesce(p.min_time, INTERVAL '1 year')
)

83

SELECT hops,
flights,
flight_time

FROM (
SELECT hops,

flights,
flight_time,
min(min_time) OVER () min_time

FROM p
WHERE p.last_arrival = p.destination

) t
WHERE flight_time = min_time;

Functions and Extensions

Problem. Find the distance between Kaliningrad (KGD) and
Petropavlovsk-Kamchatsky (PKV).

Solution. We know airport coordinates. To calculate the
distance, we can use the earthdistance extension (and
then convert miles to kilometers).

CREATE EXTENSION IF NOT EXISTS cube;

CREATE EXTENSION IF NOT EXISTS earthdistance;

SELECT round(
(a_from.coordinates <@> a_to.coordinates) *
1.609344

)
FROM airports a_from,

airports a_to
WHERE a_from.airport_code = 'KGD'
AND a_to.airport_code = 'PKC';

Problem. Draw the graph of flights between all airports.

84

Additional Features

Full-Text Search

Despite all the strength of the SQL query language, its
capabilities are not always enough for effective data han-
dling. It has become especially evident recently, when
avalanches of data, usually poorly structured, filled data
storages. A fair share of Big Data is built by texts, which
are hard to parse into database fields.

Searching for documents written in natural languages,
with the results usually sorted by relevance to the search
query, is called full-text search. In the simplest and most
typical case, the query consists of one or more words, and
the relevance is defined by the frequency of these words
in the document. This is more or less what we do when
typing a phrase in Google or Yandex search engines.

There is a large number of search engines, free and paid,
that enable you to index the whole collection of your
documents and set up search of a fairly decent quality.
In this case, index, the most important tool for search
speedup, is not a part of the database. It means that
many valuable DBMS features become unavailable: data-
base synchronization, transaction isolation, accessing and

85

using metadata to limit the search range, setting up se-
cure access to documents, and many more.

The shortcomings of document-oriented database man-
agement systems, which gain more and more popular-
ity, usually lie in the same field: they have rich full-text
search functionality, but data security and synchronization
features are of low priority. Besides, they usually belong
to the NoSQL DBMS class (for example, MongoDB), so by
design they lack all the power of SQL accumulated over
years.

On the other hand, traditional SQL database systems have
built-in full-text search engines. The LIKE operator is in-
cluded into the standard SQL syntax, but its flexibility is
obviously insufficient. As a result, DBMS developers had
to add their own extensions to the SQL standard.

In PostgreSQL, these are comparison operators ILIKE, ~,
~*, but they don’t solve all the problems either, as they
don’t take into account grammatical variation, are not
suitable for ranking, and work rather slow.

When talking about the tools of full-text search itself,
it’s important to understand that they are far from being
standardized; each DBMS implementation uses its own
syntax and its own approaches. Here we’ll only provide
some simple examples.

To learn about the full-text search capabilities, we create
another table in our demo database. Let it be a lecturer’s
draft notes split into chapters by lecture topics:

86

test=# CREATE TABLE course_chapters(
c_no text REFERENCES courses(c_no),
ch_no text,
ch_title text,
txt text,
CONSTRAINT pkt_ch PRIMARY KEY(ch_no, c_no)

);

CREATE TABLE

Now we enter the text of the first lectures for our courses
CS301 and CS305:

test=# INSERT INTO course_chapters(
c_no, ch_no,ch_title, txt)
VALUES
('CS301', 'I', 'Databases',
'We start our acquaintance with ' ||
'the fascinating world of databases'),
('CS301', 'II', 'First Steps',
'Getting more fascinated with ' ||
'the world of databases'),
('CS305', 'I', 'Local Networks',
'Here we start our adventurous journey ' ||
'through the intriguing world of networks');

INSERT 0 3

Let’s check the result:

test=# SELECT ch_no AS no, ch_title, txt
FROM course_chapters \gx

-[RECORD 1]---
no | I
ch_title | Databases
txt | In this chapter, we start getting acquainted

with the fascinating database world

87

-[RECORD 2]---
no | II
ch_title | First Steps
txt | Getting more fascinated with the world of

databases
-[RECORD 3]---
no | I
ch_title | Local Networks
txt | Here we start our adventurous journey

through the intriguing world of networks

To find the information on databases using traditional
SQL means, use the LIKE operator:

test=# SELECT txt
FROM course_chapters
WHERE txt LIKE '%fascination%' \gx

We’ll get a predictable result: 0 rows. That’s because LIKE

doesn’t know that it should also look for other words
with the same root. The query

test=# SELECT txt
FROM course_chapters
WHERE txt LIKE %fascinated%' \gx

will return the row from chapter II (but not from chap-
ter I, where the adjective “fascinating” is used):

-[RECORD 1]---
txt | Getting more fascinated with the world of

databases

88

PostgreSQL provides the ILIKE operator, which allows not
to worry about letter cases; otherwise, you would also
have to take uppercase and lowercase letters into ac-
count. Naturally, an SQL expert can always use regular
expressions (search patterns). Composing regular expres-
sions is an engaging task, little short of art. But when
there is no time for art, it’s worth having a tool that can
simply do the job.

So we’ll add one more column to the course_chapters ta-
ble. It will have a special data type tsvector:

test=# ALTER TABLE course_chapters
ADD txtvector tsvector;

test=# UPDATE course_chapters
SET txtvector = to_tsvector('english',txt);

test=# SELECT txtvector FROM course_chapters \gx

-[RECORD 1]---
txtvector | 'acquaint':4 'databas':8 'fascin':7

'start':2 'world':9
-[RECORD 2]---
txtvector | 'databas':8 'fascin':3 'get':1 'world':6
-[RECORD 3]---
txtvector | 'intrigu':8 'journey':5 'network':11

'start':3 'world':9

As we can see, the rows have changed:

1. Words are reduced to their unchangeable parts (lex-
emes).

2. Numbers have appeared. They indicate the word
position in our text.

89

3. There are no prepositions, and neither there would
be any conjunctions or other parts of the sentence
that are unimportant for search (the so-called stop-
words).

To set up a more advanced search, we would like to in-
clude chapter titles into the search area. Besides, to stress
their significance, we’ll assign weight (importance) to
them using the setweight function. Let’s modify the ta-
ble:

test=# UPDATE course_chapters
SET txtvector =

setweight(to_tsvector('english',ch_title),'B')
|| ' ' ||
setweight(to_tsvector('english',txt),'D');

UPDATE 3

test=# SELECT txtvector FROM course_chapters \gx

-[RECORD 1]---
txtvector | 'acquaint':5 'databas':1B,9 'fascin':8

'start':3 'world':10
-[RECORD 2]---
txtvector | 'databas':10 'fascin':5 'first':1B 'get':3

'step':2B 'world':8
-[RECORD 3]---
txtvector | 'intrigu':10 'journey':7 'local':1B

'network':2B,13 'start':5 'world':11

Lexemes have received relative weight markers: B and D
(possible options are A, B, C, D). We’ll assign real weight
when building queries, which will make them more flexi-
ble.

Fully armed, let’s return to search. The to_tsquery func-
tion resembles the to_tsvector function we saw above:

90

it converts a string to the tsquery data type used in
queries.

test=# SELECT ch_title
FROM course_chapters
WHERE txtvector @@

to_tsquery('english','fascination & database');

ch_title

Databases
First Steps
(2 rows)

You can check that 'fascinated & database' and their
grammatical variants will give the same result. We have
used the comparison operator @@, which works similar to
LIKE. The syntax of this operator does not allow natural
language expressions with spaces, such as “fascinating
world,” that’s why words are connected by the “and” logi-
cal operator.

The 'english' argument indicates the configuration used
by DBMS. It defines pluggable dictionaries and the parser
program, which splits the phrase into separate lexemes.
Despite their name, dictionaries enable all kinds of lex-
eme transformations.

For example, a simple stemmer dictionary like snowball
(which is used by default) reduces the word to its un-
changeable part; that’s why search ignores word endings
in queries. You can also plug in other dictionaries, such
as hunspell (which can better handle word morphology)
or unaccent (removes diacritics from letters).

91

The assigned weights allow to display the search results
by their rank:

test=# SELECT ch_title,
ts_rank_cd('{0.1, 0.0, 1.0, 0.0}', txtvector, q)

FROM course_chapters,
to_tsquery('english','Databases') q

WHERE txtvector @@ q
ORDER BY ts_rank_cd DESC;

ch_title | ts_rank_cd
-------------+------------
Databases | 1.1
First Steps | 0.1
(2 rows)

The {0.1, 0.0, 1.0, 0.0} array sets the weight. It is an op-
tional argument of the ts_rank_cd function. By default,
array {0.1, 0.2, 0.4, 1.0} corresponds to D, C, B, A. The word’s
weight increases the importance of the returned row,
which helps to rank the results.

In the final experiment, let’s modify the dispay format.
Suppose we would like to display the found words in
bold in the html page. The ts_headline function de-
fines the symbols to frame the word, as well as the min-
imum/maximum number of words to display in a single
line:

test=# SELECT ts_headline(
'english',
txt,
to_tsquery('english', 'world'),
'StartSel=, StopSel=, MaxWords=50, MinWords=5'

)
FROM course_chapters
WHERE to_tsvector('english', txt) @@

to_tsquery('english', 'world');

92

-[RECORD 1]---
ts_headline | with the fascinating database

world.
-[RECORD 2]---
ts_headline | with the world of databases.
-[RECORD 3]---
ts_headline | through the intriguing world of

networks

To speed up full-text search, special indexes are used:
GiST, GIN, and RUM. These indexes differ from the regular
database indexes. Like many other useful full-text search
features, they are out of scope of this short guide.

To learn more about full-text search, see PostgreSQL doc-
umentation: www.postgrespro.com/doc/textsearch.

Using JSON and JSONB

From the very beginning, the top priority of SQL-based
relational databases were data consistency and security,
while the volumes of information were incomparable to
the modern ones. When a new NoSQL DBMS generation
appeared, it raised a flag in the community: a much sim-
pler data structure (at first, there were mostly huge ta-
bles with only two columns for key-value pairs) allowed
to speed up search many times. Actively using parallel
computations, they could process unprecedented volumes
of information and were easy to scale. NoSQL-databases
did not have to store information in rows, and column-
oriented data storage allowed to speed up and parallelize
computations for many types of tasks.

93

https://www.postgrespro.com/doc/textsearch

Once the initial shock had passed, it became clear that
for most real tasks such a simple structure was not enough.
Composite keys were introduced, and then groups of keys
appeared. Relational DBMS didn’t want to fall behind and
started adding new features typical of NoSQL.

Since changing the database schema in relational DBMS
incur high computational cost, a new JSON data type
came in handy. At first it was targeting JS-developers, in-
cluding those writing AJAX-applications, hence JS in the
title. It kind of handled all the complexity of the added
data, allowing to create complex linear and hierarchical
structure-objects; their addition did not require to convert
the whole database.

Application developers didn’t have to modify the database
schema anymore. Just like XML, JSON syntax strictly ob-
serves data hierarchy. JSON is flexible enough to work
with non-uniform and sometimes unpredictable data
structure.

Suppose our students demo database now allows to en-
ter personal data: we have run a survey and collected the
information from professors. Some questions in the ques-
tionnaire are optional, while other questions include the
“add more information about yourself” and “other” fields.

If we added new data to the database in the usual man-
ner, there would be a lot of empty fields in multiple new
columns or additional tables. What’s even worse is that
new columns may appear in the future, and then we will
have to refactor the whole database quite a bit.

94

We can solve this problem using the json type or the
jsonb type, which appeared later. The jsonb type stores
data in a compact binary form and, unlike json, supports
indexes, which can speed up search by times.

test=# CREATE TABLE student_details(
de_id int,
s_id int REFERENCES students(s_id),
details json,
CONSTRAINT pk_d PRIMARY KEY(s_id, de_id)

);

test=# INSERT INTO student_details(de_id,s_id,details)
VALUES
(1, 1451,
'{ "merits": "none",

"flaws":
"immoderate ice cream consumption"

}'),
(2, 1432,
'{ "hobbies":

{ "guitarist":
{ "band": "Postgressors",

"guitars":["Strat","Telec"]
}

}
}'),
(3, 1556,
'{ "hobbies": "cosplay",

"merits":
{ "mother-of-five":

{ "Basil": "m", "Simon": "m", "Lucie": "f",
"Mark": "m", "Alex": "unknown"

}
}

}'),
(4, 1451,
'{ "status": "expelled"
}');

95

Let’s check that all the data is available. For convenience,
let’s join the tables student_details and students with
the help of the WHERE clause, since the new table does
not contain students’ names:

test=# SELECT s.name, sd.details
FROM student_details sd, students s
WHERE s.s_id = sd.s_id \gx

-[RECORD 1]--------------------------------------
name | Anna
details | { "merits": "none", +

| "flaws": +
| "immoderate ice cream consumption" +
| }

-[RECORD 2]--------------------------------------
name | Victor
details | { "hobbies": +

| { "guitarist": +
| { "band": "Postgressors", +
| "guitars":["Strat","Telec"] +
| } +
| } +
| }

-[RECORD 3]--------------------------------------
name | Nina
details | { "hobbies": "cosplay", +

| "merits": +
| { "mother-of-five": +
| { "Basil": "m", +
| "Simon": "m", +
| "Lucie": "f", +
| "Mark": "m", +
| "Alex": "unknown" +
| } +
| } +
| }

-[RECORD 4]--------------------------------------
name | Anna
details | { "status": "expelled" +

| }

96

Suppose we are interested in entries that hold informa-
tion about students’ merits. We can access the values of
the “merits” key using a special operator ->>:

test=# SELECT s.name, sd.details
FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details ->> 'merits' IS NOT NULL \gx

-[RECORD 1]--------------------------------------
name | Anna
details | { "merits": "none", +

| "flaws": +
| "immoderate ice cream consumption" +
| }

-[RECORD 2]--------------------------------------
name | Nina
details | { "hobbies": "cosplay", +

| "merits": +
| { "mother-of-five": +
| { "Basil": "m", +
| "Simon": "m", +
| "Lucie": "f", +
| "Mark": "m", +
| "Alex": "unknown" +
| } +
| } +
| }

We made sure that the two entries are related to merits
of Anna and Nina, but such a result is unlikely to satisfy
us, as Anna’s merits are actually “none.” Let’s modify the
query:

test=# SELECT s.name, sd.details
FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details ->> 'merits' IS NOT NULL
AND sd.details ->> 'merits' != 'none';

97

Make sure that this query only returns Nina, whose merits
are real.

This method does not always work. Let’s try to find out
which guitars our musician Victor is playing:

test=# SELECT sd.de_id, s.name, sd.details
FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details ->> 'guitars' IS NOT NULL \gx

This query won’t return anything. It’s because the corre-
sponding key-value pair is located inside the JSON hierar-
chy, nested into the pairs of a higher level:

name | Victor
details | { "hobbies": +

| { "guitarist": +
| { "band": "Postgressors", +
| "guitars":["Strat","Telec"] +
| } +
| } +
| }

To get to guitars, let’s use the #> operator and go down
the hierarchy starting with “hobbies”:

test=# SELECT sd.de_id, s.name,
sd.details #> 'hobbies,guitarist,guitars'

FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details #> 'hobbies,guitarist,guitars'

IS NOT NULL \gx

We can see that Victor is a fan of Fender:

98

de_id | name | ?column?
-------+--------+-------------------

2 | Victor | ["Strat","Telec"]

The json type has a younger brother: jsonb. The letter
“b” implies the binary (and not text) format of data stor-
age. Such data can be compacted, which enables faster
search. Nowadays, jsonb is used much more often than
json.

test=# ALTER TABLE student_details
ADD details_b jsonb;

test=# UPDATE student_details
SET details_b = to_jsonb(details);

test=# SELECT de_id, details_b
FROM student_details \gx

-[RECORD 1]--------------------------------------
de_id | 1
details_b | {"flaws": "immoderate ice cream

consumption", "merits": "none"}
-[RECORD 2]--------------------------------------
de_id | 2
details_b | {"hobbies": {"guitarist": {"guitars":

["Strat", "Telec"], "band":
"Postgressors"}}}

-[RECORD 3]--------------------------------------
de_id | 3
details_b | {"hobbies": "cosplay", "merits":

{"mother-of-five": {"Basil": "m",
"Lucie": "f", "Alex": "unknown",
"Mark": "m", "Simon": "m"}}}

-[RECORD 4]--------------------------------------
de_id | 4
details_b | {"status": "expelled"}

99

We can notice that apart from a different notation, the
order of values in the pairs has changed: Alex is now dis-
played before Mark. It’s not a disadvantage of jsonb as
compared to json, it’s simply its data storage specifics.

The jsonb type is supported by a larger number of oper-
ators. A most useful one is the “contains” operator @>. It
works similar to the #> operator for json.

Let’s find the entry that mentions Lucie, a mother-of-five’s
daughter:

test=# SELECT s.name,
jsonb_pretty(sd.details_b) json

FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details_b @>

'{"merits":{"mother-of-five":{}}}' \gx

-[RECORD 1]-------------------------------------
name | Nina
json | { +

| "merits": { +
| "mother-of-five": { +
| "Alex": "unknown", +
| "Mark": "m", +
| "Basil": "m", +
| "Lucie": "f", +
| "Simon": "m" +
| } +
| }, +
| "hobbies": "cosplay" +
| }

We have used the jsonb_pretty() function, which for-
mats the output of the jsonb type.

Alternatively, you can use the jsonb_each() function,
which expands key-value pairs:

100

test=# SELECT s.name,
jsonb_each(sd.details_b)

FROM student_details sd, students s
WHERE s.s_id = sd.s_id
AND sd.details_b @>

'{"merits":{"mother-of-five":{}}}' \gx

-[RECORD 1]-------------------------------------
name | Nina
jsonb_each | (hobbies,"""cosplay""")
-[RECORD 2]-------------------------------------
name | Nina
jsonb_each | (merits,"{""mother-of-five"":

{""Alex"": ""unknown"", ""Mark"":
""m"", ""Basil"": ""m"", ""Lucie"":
""f"", ""Simon"": ""m""}}")

By the way, the name of Nina’s child is replaced by an
empty space {} in this query. This syntax adds flexibility
to the process of application development.

What’s more important, jsonb allows you to create in-
dexes that support the @> operator, its inverse <@, and
many more. Among the indexes supporting jsonb, GIN
is typically the most useful one. The json type does not
support indexes, so for high-load applications it is usually
recommended to use jsonb, not json.

To learn more about json and jsonb types and the func-
tions that can be used with them, see PostgreSQL docu-
mentation at postgrespro.com/doc/datatype-json and
postgrespro.com/doc/functions-json.

101

https://postgrespro.com/doc/datatype-json
https://postgrespro.com/doc/functions-json

PostgreSQL
for Applications

A Separate User

In the previous chapter, we showed how to connect to
the database server on behalf of the postgres user. This
is the only DBMS user available right after PostgreSQL in-
stallation. However, the postgres user has superuser priv-
ileges, so the application should not use it for database
connections. It is better to create a new user and make
it the owner of a separate database, so that its rights are
limited to this database only.

postgres=# CREATE USER app PASSWORD 'p@ssw0rd';

CREATE ROLE

postgres=# CREATE DATABASE appdb OWNER app;

CREATE DATABASE

To learn more about users and priviledges, see:
postgrespro.com/doc/user-manag.html

and postgrespro.com/doc/ddl-priv.html.

To connect to a new database and start working with it
on behalf of the newly created user, run:

102

https://postgrespro.com/doc/user-manag.html
https://postgrespro.com/doc/ddl-priv.html

postgres=# \c appdb app localhost 5432

Password for user app: ***
You are now connected to database "appdb" as user
"app" on host "127.0.0.1" at port "5432".

appdb=>

This command takes the following parameters: data-
base name (appdb), username (app), node (localhost or
127.0.0.1), and port number (5432). Note that the prompt
has changed: instead of the hash symbol (#), the greater
than sign is displayed (>). The hash symbol indicates the
superuser rights, similar to the root user in Unix.

The app user can work with their database without any
limitations. For example, this user can create a table:

appdb=> CREATE TABLE greeting(s text);

CREATE TABLE

appdb=> INSERT INTO greeting VALUES ('Hello, world!');

INSERT 0 1

Remote Connections

In our example, the client and DBMS server are located
on the same system. Clearly, you can install PostgreSQL
onto a separate server and connect to it from a different
system (for example, from an application server). In this
case, you must specify your DBMS server address instead
of localhost. But it is not enough: for security reasons,
PostgreSQL only allows local connections by default.

103

To connect to the database from the outside, you must
edit two files.

First of all, modify the postgresql.conf file, which con-
tains the main configuration settings. It is usually located
in the data directory. Find the line defining network inter-
faces for PostgreSQL to listen on:

#listen_addresses = 'localhost'

and replace it with:

listen_addresses = '*'

Next, edit the ph_hba.conf file with authentication set-
tings. When the client tries to connect to the server, Post-
greSQL searches this file for the first line that matches
the connection by four parameters: local or network (host)
connection, database name, username, and client IP-
address. This line also specifies how the user must con-
firm its identity.

For example, on Debian and Ubuntu, this file includes the
following line among others:

local all all peer

It means that local connections (local) to any database
(all) on behalf of any user (all) must be validated by
the peer authorization method (for local connections, IP-
address is obviously not required).

104

The peer method means that PostgreSQL requests the
current username from the operating system and assumes
that the OS has already performed the required authenti-
cation check (prompted for the password). This is why on
Linux-like operating systems users usually don’t have to
enter the password when connecting to the server on the
local computer: it is enough to enter the password when
logging into the system.

But Windows does not support local connections, so this
line looks as follows:

host all all 127.0.0.1/32 md5

It means that network connections (host) to any database
(all) on behalf of any user (all) from the local address
(127.0.0.1) must be checked by the md5 method. This
method requires the user to enter the password.

So, for our purposes, add the following line to the end of
the pg_hba.conf file:

host appdb app all md5

This setting allows the app user to access the appdb data-
base from any address if the correct password is entered.

After changing the configuration files, don’t forget to
make the server re-read the settings:

postgres=# SELECT pg_reload_conf();

To learn more about authentication settings, see
postgrespro.com/doc/client-authentication.html

105

https://postgrespro.com/doc/client-authentication.html

Pinging the Server

To access PostgreSQL from an application in any program-
ming language, you have to use an appropriate library
and install the corresponding DBMS driver.

Below we provide simple examples for several popular
languages. These examples can help you quickly check
the database connection. The provided programs contain
only the minimal viable code for the database query; in
particular, there is no error handling. Don’t take these
code snippets as an example to follow.

A note on Russian language support in Microsoft Win-
dows: if you are working on a Windows system, don’t for-
get to switch to a TrueType font in the Command Prompt
window (for example, “Lucida Console” or “Consolas”), and
run the following commands to enable the correct display
of cyrillic characters:

C:\> chcp 1251

Active code page: 1251

C:\> set PGCLIENTENCODING=WIN1251

PHP

PHP interacts with PostgreSQL via a special extension. On
Linux, apart from the PHP itself, you also have to install
the package with this extension:

$ sudo apt-get install php5-cli php5-pgsql

106

You can install PHP for Windows from the PHP website:
windows.php.net/download. The extension for Post-
greSQL is already included into the binary distribution,
but you must find and uncomment (by removing the semi-
colon) the following line in the php.ini file:

;extension=php_pgsql.dll

A sample program (test.php):

<?php
$conn = pg_connect('host=localhost port=5432 ' .

'dbname=appdb user=app ' .
'password=p@ssw0rd') or die;

$query = pg_query('SELECT * FROM greeting') or die;
while ($row = pg_fetch_array($query)) {

echo $row[0].PHP_EOL;
}
pg_free_result($query);
pg_close($conn);

?>

Let’s execute this command:

$ php test.php

Hello, world!

You can read about this PostgreSQL extension in PHP doc-
umentation: php.net/manual/en/book.pgsql.php.

107

http://windows.php.net/download
http://php.net/manual/en/book.pgsql.php

Perl

In the Perl language, database operations are imple-
mented via the DBI interface. On Debian and Ubuntu,
Perl itself is pre-installed, so you only need to install the
driver:

$ sudo apt-get install libdbd-pg-perl

There are several Perl builds for Windows, which are listed
at www.perl.org/get.html. ActiveState Perl and Straw-
berry Perl already include the driver required for Post-
greSQL.

A sample program (test.pl):

use DBI;
my $conn = DBI->connect(

'dbi:Pg:dbname=appdb;host=localhost;port=5432',
'app','p@ssw0rd') or die;

my $query = $conn->prepare('SELECT * FROM greeting');
$query->execute() or die;
while (my @row = $query->fetchrow_array()) {

print @row[0]."\n";
}
$query->finish();
$conn->disconnect();

Let’s execute this command:

$ perl test.pl

Hello, world!

The interface is described in documentation:
metacpan.org/pod/DBD::Pg.

108

http://www.perl.org/get.html
http://metacpan.org/pod/DBD::Pg

Python

The Python language usually uses the psycopg library
(pronounced as “psycho-pee-gee”) to work with PostgreSQL.
On Debian and Ubuntu, Python 2 is pre-installed, so you
only need the corresponding driver:

$ sudo apt-get install python-psycopg2

If you are using Python 3, install the python3-psycopg2
package.

You can download Python for Windows from the www.

python.org website. The psycopg library is available at
initd.org/psycopg (choose the version corresponding to
the version of Python installed). You can also find all the
required documentation there.

A sample program (test.py):

import psycopg2
conn = psycopg2.connect(

host='localhost', port='5432', database='appdb',
user='app', password='p@ssw0rd')

cur = conn.cursor()
cur.execute('SELECT * FROM greeting')
rows = cur.fetchall()
for row in rows:

print row[0]
conn.close()

Let’s execute this command:

$ python test.py

Hello, world!

109

http://www.python.org
http://www.python.org
http://initd.org/psycopg

Java

In Java, database operation is implemented via the JDBC
interface. Install JDK 1.7; a package with the JDBC driver
is also required:

$ sudo apt-get install openjdk-7-jdk

$ sudo apt-get install libpostgresql-jdbc-java

You can download JDK for Windows from www.oracle.

com/technetwork/java/javase/downloads. The JDBC
driver is available at jdbc.postgresql.org (choose the
version that corresponds to the JDK installed on your sys-
tem). You can also find all the required documentation
there.

Let’s consider a sample program (Test.java):

import java.sql.*;
public class Test {

public static void main(String[] args)
throws SQLException {

Connection conn = DriverManager.getConnection(
"jdbc:postgresql://localhost:5432/appdb",
"app", "p@ssw0rd");

Statement st = conn.createStatement();
ResultSet rs = st.executeQuery(

"SELECT * FROM greeting");
while (rs.next()) {

System.out.println(rs.getString(1));
}
rs.close();
st.close();
conn.close();

}
}

110

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://jdbc.postgresql.org

We compile and execute the program specifying the path
to the JDBC class driver (on Windows, paths are separated
by semicolons, not colons):

$ javac Test.java

$ java -cp .:/usr/share/java/postgresql-jdbc4.jar \
Test

Hello, world!

Backup

Although our database appdb contains just one table, it’s
worth thinking of data persistence. While your application
contains little data, the easiest way to create a backup is
to use the pg_dump utility:

$ pg_dump appdb > appdb.dump

If you open the resulting appdb.dump file in a text editor,
you will see regular SQL commands that create all the
appdb objects and fill them with data. You can pass this
file to psql to restore the content of the database. For
example, you can create a new database and import all
the data into it:

$ createdb appdb2

$ psql -d appdb2 -f appdb.dump

111

pg_dump offers many features worth checking out: postgrespro.
com/doc/app-pgdump. Some of them are available only if
the data is dumped in an internal custom format. In this
case, you have to use the pg_restore utility instead of
psql to restore the data.

In any case, pg_dump can extract the content of a single
database only. To make a backup of the whole cluster, in-
cluding all databases, users, and tablespaces, you should
use a bit different command: pg_dumpall.

Big serious projects require an elaborate strategy of pe-
riodic backups. A better option here is a physical “bi-
nary” copy of the cluster, which can be taken with the
pg_basebackup utility. To learn more about the available
backup tools, see documentation: postgrespro.com/doc/
backup.

Built-in PostgreSQL features enable you to implement al-
most anything required, but you have to complete multi-
step workflows that need automation. That’s why many
companies often create their own backup tools to sim-
plify this task. Such a tool is developed at Postgres Pro-
fessional, too. It is called pg_probackup. This tool is dis-
tributed free of charge and allows to perform incremental
backups at the page level, ensures data integrity, works
with big volumes of information using parallel execution
and compression, and implements various backup strate-
gies. Its full documentation is available at postgrespro.
com/doc/app-pgprobackup.

112

https://postgrespro.com/doc/app-pgdump
https://postgrespro.com/doc/app-pgdump
https://postgrespro.com/doc/backup
https://postgrespro.com/doc/backup
https://postgrespro.com/doc/app-pgprobackup
https://postgrespro.com/doc/app-pgprobackup

What’s next?

Now you are ready to develop your application. With re-
gards to the database, the application will always consist
of two parts: server and client. The server part comprises
everything that relates to DBMS: tables, indexes, views,
triggers, stored functions. The client part holds everything
that works outside of DBMS and connects to it; from the
database point of view, it doesn’t matter whether it’s a
“fat” client or an application server.

An important question that has no clear-cut answer: where
should we place business logic?

One of the popular approaches is to implement all the
logic on the client, outside of the database. It often hap-
pens when developers are not very familiar with DBMS
capabilities and prefer to rely on what they know well,
that is application code. In this case, DBMS becomes a
somewhat secondary element of the application and only
ensures data “persistence,” its reliable storage. Besides,
DBMS can be isolated by an additional abstraction level,
such as an ORM tool that automatically generates data-
base queries from the constructs of the programming lan-
guage familiar to developers. Such solutions are some-
times justified by the intent to develop an application
that is portable to any DBMS.

This approach has the right to exist: if such a system
works and addresses all business objectives, why not?

113

However, this solution also has some obvious disadvan-
tages:

• Data consistency is ensured by the application.
Instead of letting DBMS check data consistency (and
this is exactly what relational database systems are
especially good at), all the required checks are per-
formed by the application. Rest assured that sooner
or later your database will contain dirty data. You
have to either fix these errors, or teach the appli-
cation how to handle them. If the same database
is used by several different applications, it’s simply
impossible to do without DBMS help.

• Performance leaves much to be desired.
ORM systems allow to create an abstraction level
over DBMS, but the quality of SQL queries they gen-
erate is rather questionable. As a rule, multiple
small queries are executed, and each of them is
quite fast on its own. But such a model can cope
only with low load on small data volumes and is
virtually impossible to optimize on the DBMS side.

• Application code gets more complicated.
Using application-oriented programming languages,
it’s impossible to write a really complex query that
could be properly translated to SQL in an auto-
mated way. That is why complex data processing
(if it is needed, of course) has to be implemented at
the application level, with all the required data re-
trieved from the database in advance. In this case,
an extra data transfer over the network is performed.
Besides, DBMS data manipulation algorithms (scans,

114

joins, sorting, aggregation) are guaranteed to per-
form better than the application code since they
have been improved and optimized for years.

Obviously, to use all the DBMS features, including in-
tegrity constraints and data handling logic in stored func-
tions, a careful analysis of its specifics and capabilities is
required. You have to master the SQL language to write
queries and learn one of the server programming lan-
guages (typically, PL/pgSQL) to create functions and trig-
gers. In return, you will get a reliable tool, one of the
most important building blocks for any information sys-
tem architecture.

In any case, you have to decide for yourself where to
implement business logic: on the server side or on the
client side. We’ll just note that there’s no need to go to
extremes, as the truth often lies somewhere in the mid-
dle.

115

pgAdmin

pgAdmin is a popular GUI tool for administering Post-
greSQL. This application facilitates the main administra-
tion tasks, shows database objects, and allows to run SQL
queries.

For a long time, pgAdmin 3 used to be a de-facto stan-
dard, but EnterpriseDB developers ended its support and
released a new version in 2016, having fully rewritten the
product using Python and web development technologies
instead of C++. Because of the completely reworked inter-
face, pgAdmin 4 got a cool reception at first, but it is still
being developed and improved.

Nevertheless, the third version is not yet forgotten and is
now developed by the BigSQL team: www.openscg.com/
bigsql/pgadmin3.

Here we’ll take a look at the main features of the new
pgAdmin 4.

Installation

To launch pgAdmin 4 on Windows, use the installer avail-
able at www.pgadmin.org/download/. The installation

116

https://www.openscg.com/bigsql/pgadmin3
https://www.openscg.com/bigsql/pgadmin3
https://www.pgadmin.org/download/

procedure is simple and straightforward, there is no need
to change the default options.

Unfortunately, there are no packages available for Debian
and Ubuntu systems yet, so we’ll describe the build pro-
cess in more detail. First, let’s install the packages for the
Python language:

$ sudo apt-get install virtualenv python-pip \
libpq-dev python-dev

Then let’s initialize the virtual environment in the pgad-
min4 directory (you can choose a different directory if you
like):

$ cd ~
$ virtualenv pgadmin4
$ cd pgadmin4
$ source bin/activate

Now let’s install pgAdmin itself. You can find the latest
available version here: www.pgadmin.org/download/
pgadmin-4-python-wheel/.

$ pip install https://ftp.postgresql.org/pub/pgadmin/
pgadmin4/v2.0/pip/pgadmin4-2.0-py2.py3-none-any.whl

$ rm -rf ~/.pgadmin/

Finally, we have to configure pgAdmin to run in the desk-
top mode (we are not going to cover the server mode
here).

117

https://www.pgadmin.org/download/pgadmin-4-python-wheel/
https://www.pgadmin.org/download/pgadmin-4-python-wheel/

$ cat <<EOF \
>lib/python2.7/site-packages/pgadmin4/config_local.py
import os
DATA_DIR = os.path.realpath(

os.path.expanduser(u'~/.pgadmin/'))
LOG_FILE = os.path.join(DATA_DIR, 'pgadmin4.log')
SQLITE_PATH = os.path.join(DATA_DIR, 'pgadmin4.db')
SESSION_DB_PATH = os.path.join(DATA_DIR, 'sessions')
STORAGE_DIR = os.path.join(DATA_DIR, 'storage')
SERVER_MODE = False
EOF

Fortunately, you need to complete these steps only once.

To start pgAdmin 4, run:

$ cd ~/pgadmin4
$ source bin/activate
$ python \

lib/python2.7/site-packages/pgadmin4/pgAdmin4.py

The user interface is now available in your web browser
at the localhost:5050 address.

Features

Connecting to a Server

First of all, let’s set up a connection to the server. Click
the Add New Server button. In the opened window, in the
General tab, enter an arbitrary connection name Name.

118

http://localhost:5050

In the Connection tab, enter Host name/address, Port,
Username, and Password. If you don’t want to enter the
password every time, select the Save password check box.

When you click the Save button, the application checks
that the server with the specified parameters is available,
and registers a new connection.

119

Browser

In the left pane, you can see the Browser tree. As you ex-
pand its objects, you can get to the server, which we have
called LOCAL. You can see all the databases it contains:

• appdb has been created to check connection to
PostgreSQL using different programming languages.

• demo is our demo database.

• postgres is created automatically when DBMS is
installed.

• test was used in the “Trying SQL” chapter.

If you expand the Schemas item for the appdb database,
you can find the greetings table that we have created,

120

view its columns, integrity constraints, indexes, triggers,
etc.

For each object type, the context (right-click) menu lists
all the possible actions. For example, export to a file or
load from a file, assign privileges, delete.

The right pane includes several tabs that display refer-
ence information:

• Dashboard provides system activity charts.

• Properties displays the properties of the object se-
lected in the Browser (for example, data type of the
columns, etc.)

• SQL shows the SQL command used to create the
selected object.

• Statistics lists information used by the query opti-
mizer to build query plans; can be used by DBMS
administrator for case analysis.

• Dependencies, Dependents illustrates dependencies
between the selected object and other objects in
the database.

Running Queries

To execute a query, open a new tab with the SQL window
by choosing Tools — Query tool from the menu.

121

Enter your query in the upper part of the window and
press F5. The Data Output tab in the lower part of the
window will display the result of the query.

You can type the next query starting from a new line,
without deleting the previous query: just select the re-
quired code fragment before pressing F5. Thus, the whole
history of your actions will be always in front of you. It is
usually more convenient than searching for the required
query in the log on the Query History tab.

122

Other

pgAdmin provides a graphical user interface for standard
PostgreSQL utilities, system catalog tables, administra-
tion functions, and SQL commands. The built-in PL/pgSQL
debugger is worth a separate mention. You can learn
about all pgAdmin features on the product website www.

pgadmin.org, or in the built-in pgAdmin help system.

123

https://www.pgadmin.org
https://www.pgadmin.org

Documentation
and Trainings

Reading documentation is indispensable for professional
use of PostgreSQL. It describes all the DBMS features and
provides an exhaustive reference that should always be
at hand. Reading documentation, you can get full and
precise information first hand: it is written by develop-
ers themselves and is carefully kept up-to-date at all
times. PostgreSQL documentation is available at www.
postgresql.org/docs or www.postgrespro.com/docs.

We at Postgres Professional have translated the whole
documentation set into Russian. It is available on our
website: www.postgrespro.ru/docs.

While working on this translation, we also compiled an
English-Russian glossary, published at postgrespro.com/
education/glossary. We recommend consulting this
glossary when translating English articles into Russian to
use consistent terminology familiar to a wide audience.

There are also French (docs.postgresql.fr) and Japanese
(www.postgresql.jp/document) translations provided by
national communities.

124

https://www.postgresql.org/docs
https://www.postgresql.org/docs
https://www.postgrespro.com/docs
https://www.postgrespro.ru/docs
https://postgrespro.com/education/glossary
https://postgrespro.com/education/glossary
https://docs.postgresql.fr
https://www.postgresql.jp/document

Training Courses

Apart from documentation, we also develop training cours-
es for DBAs and application developers (delivered in Rus-
sian):

• DBA1. Basic PostgreSQL administration.

• DBA2. Advanced PostgreSQL administration.

• DEV1. Basic server-side application development.

• DEV2. Advanced server-side application develop-
ment.

These courses are divided into basic and advanced be-
cause of the large volume of information, which is hard
to present and take in within several days. Don’t think
that basic courses are only for novices, while advanced
ones are only for experienced DBAs and developers. Al-
though some topics are included into both basic and ad-
vanced courses, there are not too many overlaps.

For example, our three-day basic DBA1 course introduces
PostgreSQL and provides detailed explanations of the
main database administration concepts, while the five-
day DBA2 course covers specifics of DBMS internals and
setup, query optimization, and a number of other topics.
The advanced course does not go back to the topics cov-
ered in the basic course. Developer courses are structured
in a similar way.

Documentation contains all the details about PostgreSQL.
However, the information is scattered across different

125

chapters and requires repeated thoughtful reading. Unlike
documentation, each course consists of separate modules
that offer several related topics, gradually explaining the
subject matter. Instead of providing every possible detail,
they focus on important practical information. Thus, our
courses are intended to complement documentation, not
to replace it.

Each course topic includes theory and practice. Theory is
not just a presentation: in most cases, a live demo is also
provided. In the practical part, students are asked to com-
plete a number of assignments to review the presented
topics.

Topics are split in such a way that theory does not take
more than an hour. Longer time can significantly hinder
course comprehension. Practical assignments usually take
up to 30 minutes.

Course materials include presentations with detailed
comments for each slide, the output of demo scripts, so-
lutions to practical assignments, and additional reference
materials on some topics.

For non-commercial use, all course materials are available
on our website for free.

126

Courses for Database Administrators

DBA1. Basic PostgreSQL administration

Duration: 3 days

Background knowledge:

Basic knowledge of databases and SQL.
Familiarity with Unix.

Knowledge and skills gained:

General understanding of PostgreSQL architecture.
Installation, initial setup, server management.
Logical and physical data structure.
Basic administration tasks.
User and access management.
Understanding of backup and replication concepts.

Topics:

Basic toolkit

1. Installation and management
2. Using psql
3. Configuration

127

Architecture

4. PostgreSQL general overview
5. Isolation and multi-version concurrency control
6. Buffer cache and write-ahead log

Data management

7. Databases and schemas
8. System catalog
9. Tablespaces
10. Low-level details

Administration tasks

11. Monitoring
12. Maintenance

Access control

13. Roles and attributes
14. Privileges
15. Row-level security
16. Connection and authentication

Backups

17. Overview

Replication

18. Overview

DBA1 course materials (presentations, demos, practical
assignments, lecture videos) are available for self-study at
www.postgrespro.ru/education/courses/DBA1.

128

https://www.postgrespro.ru/education/courses/DBA1

DBA2. Advanced PostgreSQL administration

Duration: 5 days

Background knowledge:

A good grasp of Unix.
Basic knowledge of DBMS architecture, installation,
setup, and maintenance.

Knowledge and skills gained:

Understanding PostgreSQL architecture.
Database monitoring and setup, performance optimiza-
tion tasks.
Database maintenance tasks.
Backup and replication.

Topics:

Introduction

1. PostgreSQL Architecture

Isolation and multi-version concurrency control

2. Transaction isolation
3. Pages and tuple versions
4. Snapshots and locks
5. Vacuum
6. Autovacuum and freezing

129

Logging

7. Buffer cache
8. Write-ahead log
9. Checkpoints

Replication

10. File replication
11. Stream replication
12. Switchover to a replica
13. Replication options

Optimization basics

14. Query handling
15. Access paths
16. Join methods
17. Statistics
18. Memory usage
19. Profiling
20. Optimizing queries

Miscellaneous

21. Partitioning
22. Localization
23. Server updates
24. Managing extensions
25. Foreign data

DBA2 course materials (presentations, demos, practical
assignments, lecture videos) are available for self-study at
www.postgrespro.ru/education/courses/DBA2.

130

https://www.postgrespro.ru/education/courses/DBA2

Courses for Application Developers

DEV1. A basic course for server-side developers

Duration: 4 days

Background knowledge:

SQL fundamentals.
Experience with any procedural programming lan-
guage.
Basic knowledge of Unix.

Knowledge and skills gained:

General information about PostgreSQL architecture.
Using the main database objects:
tables, indexes, views.
Programming in SQL and PL/pgSQL on the server side.
Using the main data types,
including records and arrays.
Setting up communication with the client side of the
application.

Topics:

Basic toolkit

1. Installation and management, psql

131

Architecture

2. PostgreSQL general overview
3. Isolation and multi-version concurrency control
4. Buffer cache and write-ahead log

Data management

5. Logical structure
6. Physical structure

“Bookstore” application

7. Application data model
8. Client interaction with DBMS

SQL

9. Functions
10. Composite types

PL/pgSQL

11. Language overview and programming structures
12. Executing queries
13. Cursors
14. Dynamic commands
15. Arrays
16. Error handling
17. Triggers
18. Debugging

Access control

19. Overview

DEV1 course materials (presentations, demos, practical
assignments, lecture videos) are available for self-study at
www.postgrespro.ru/education/courses/DEV1.

132

https://www.postgrespro.ru/education/courses/DEV1

DEV2. An advanced course for server-side
developers

This course is under development right now, it is ex-
pected in the near future.

Courses for DBMS Developers

Apart from the regular courses in training centers, Post-
greSQL core developers who work in our company also
conduct trainings from time to time.

Hacking PostgreSQL

The “Hacking PostgreSQL” course is based on the personal
experience of Postgres Professional developers, as well
as conference materials, articles, and careful analysis of
documentation and source code. This course is primar-
ily targeted at developers who are getting started with
PostgreSQL core development, but it can also be interest-
ing to administrators who sometimes have to turn to the
code, and to anyone interested in the architecture of a
large-scale system, willing to know “how it all works”.

Background knowledge:

Basic knowledge of SQL, transactions, indexes, etc.
Knowledge of С programming language, at least at the
level of reading the source code (hands-on experience
is preferable).

133

Familiarity with basic structures and algorithms.

Topics:

1. Architecture overview
2. PostgreSQL community and developer tools
3. Extensibility
4. Source code overview
5. Physical data model
6. Shared memory and locks
7. Local process memory
8. Basics of query planner and executor

Hacking PostgreSQL course materials are available for
self-study at www.postgrespro.ru/education/courses/
hacking.

134

https://www.postgrespro.ru/education/courses/hacking
https://www.postgrespro.ru/education/courses/hacking

The Hacker’s
Guide to the Galaxy

News and Discussions

If you are going to work with PostgreSQL, you need to
stay up-to-date and learn about new features of upcom-
ing releases and other news. Many people write their own
blogs, where they publish interesting and useful content.
To get all the English-language articles in one place, you
can check the planet.postgresql.org website.

Don’t forget about wiki.postgresql.org, which holds
a collection of articles supported and expanded by the
community. Here you can find FAQ, training materials, ar-
ticles about system setup and optimization, migration
specifics from different DBMS, etc.

More than 5000 PostgreSQL users are members of the
Facebook group “PostgreSQL Server” (www.facebook.com/
groups/postgres).

You can also ask your questions on stackoverflow.com.

Postgres Professional corporate blog is available at
postgrespro.com/blog.

135

https://planet.postgresql.org
https://wiki.postgresql.org
https://www.facebook.com/groups/postgres
https://www.facebook.com/groups/postgres
https://stackoverflow.com
https://postgrespro.com/blog

Mailing Lists

To get all the news first-hand, without waiting for some-
one to write a blog post, subscribe to mailing lists. Tradi-
tionally, PostgreSQL developers discuss all questions ex-
clusively by email, in the pgsql-hackers mailing list (often
called simply “hackers”).

You can find all mailing lists at www.postgresql.org/
list. For example:

• pgsql-general to discuss general questions
• pgsql-bugs to report found bugs
• pgsql-announce to get new release announcements

and many more.

Anyone can subscribe to any mailing list to receive regu-
lar emails and participate in discussions.

Another option is to read the message archive from time
to time. You can find it at www.postgresql.org/list,
or view all threads in the chronological order at www.
postgresql-archive.org. The message archive can be
also viewed and searched at postgrespro.com/list.

Commitfest

Another way to keep up with the news is to check the
commitfest.postgresql.org page. On this website, the

136

https://www.postgresql.org/list
https://www.postgresql.org/list
https://www.postgresql.org/list
http://www.postgresql-archive.org
http://www.postgresql-archive.org
https://postgrespro.com/list
https://commitfest.postgresql.org

community opens “commitfests” for developers to sub-
mit their patches. For example, commitfest 01.03.2017–
31.03.2017 was open for version 10, while the next com-
mitfest 01.09.2017–30.09.2017 is related to the next re-
lease. It allows to stop accepting new features at least
about half a year before the release and have the time to
stabilize the code.

Patches undergo several stages. First, they are reviewed
and fixed. Then they are either accepted, moved to the
next commitfest, or rejected (if you are completely out of
luck).

Thus, you can stay informed about new features already
included into PostgreSQL or planned for the next release.

Conferences

PostgreSQL conferences are held all over the world:

February or March: PGConf.Russia (pgconf.ru)

May: PGCon in Ottava, Canada (pgcon.org)

July or Septemeber: PGDay in Russia (pgday.ru)

November: PGConf.Europe (pgconf.eu)

December: PGConf.Asia (www.pgconf.asia)

137

https://pgconf.ru
https://pgcon.org
https://pgday.ru
https://pgconf.eu
https://www.pgconf.asia

Postgres Professional

The Postgres Professional company was founded in 2015
by key Russian PostgreSQL developers. It delivers a full
spectrum of PostgreSQL-related services and develops
Postgres Pro, an advanced PostgreSQL fork.

The company has a special focus on education. It hosts
PgConf.Russia, the largest international PostgreSQL con-
ference in Moscow, and participates in other conferences
all over the world.

Our address:

7A Dmitry Ulyanov str., Moscow, Russia, 117036

Tel:

+7 495 150-06-91

Corporate website and email:

postgrespro.com

info@postgrespro.com

138

https://postgrespro.com
mailto:info@postgrespro.com

Services

Commercial Solutions Based on PostgreSQL

• Designing and deploying mission-critical high-performance
systems using PostgreSQL DBMS. Designing cus-
tomized reliable cluster architectures.

• Optimizing DBMS configuration and queries.

• Consulting on using DBMS in industrial systems.

• Customer database technical auditing.

• Remote DBA.

• PostgreSQL DBMS deployment.

Vendor Technical Support

• 24x7 L2 and L3 technical support for PostgreSQL
DBMS.

• Round-the-clock support by expert DBAs: system
monitoring, disaster recovery, incident analysis, per-
formance management.

• Bug fixes in DBMS core and its extensions.

139

Migration of Application Systems

• Analyzing available application systems, estimating
the complexity of their migration from other DBMS
to PostgreSQL.

• Designing the architecture for new solutions, defin-
ing the required modifications in application sys-
tems.

• Migrating operational systems to PostgreSQL DBMS,
including systems under load.

• Providing support to application developers during
DBMS migration.

Custom development at PostgreSQL core and
extension levels

• Adding custom PostgreSQL core-level features and
extension modules.

• Developing new extensions to address customer
system and application tasks.

• Providing customized DBMS versions for the benefit
of our clients.

• Submitting patches to the upstream version of Post-
greSQL code.

140

Arranging Trainings

• PostgreSQL trainings for database administrators.

• Trainings for application system architects and de-
velopers: explaining PostgreSQL specifics and how
to effectively use its advantages.

• Sharing information on new features and important
changes in new versions.

• Holding seminars to analyze customer projects.

141

	Introduction
	About PostgreSQL
	Some History
	Development
	Support
	Current State
	Reliability and Stability
	Security
	Conformance to the SQL Standard
	Transaction Support
	For Application Developers
	Scalability and Performance
	Query Planner
	Indexing
	Cross-Platform Support
	Extensibility
	Availability
	Independence

	Installation and Quick Start
	Windows
	Installation
	Managing the Service and the Main Files

	Debian and Ubuntu
	Installation
	Managing the Service and the Main Files

	Trying SQL
	Connecting via psql
	Database
	Tables

	Filling Tables with Data
	Data Retrieval
	Joins
	Subqueries
	Sorting
	Grouping Operations
	Changing and Deleting Data
	Transactions
	Useful psql Commands

	Conclusion

	Demo Database
	Description
	General Information
	Bookings
	Tickets
	Flight Segments
	Flights

	Installation
	Installation from the Website

	Sample Queries
	A Couple of Words about the Schema
	Simple Queries
	Aggregate Functions
	Window Functions
	Arrays
	Recursive Queries
	Functions and Extensions

	Additional Features
	Full-Text Search
	Using JSON and JSONB

	PostgreSQL for Applications
	A Separate User
	Remote Connections
	Pinging the Server
	PHP
	Perl
	Python
	Java

	Backup
	What's next?

	pgAdmin
	Installation
	Features
	Connecting to a Server
	Browser
	Running Queries
	Other

	Documentation and Trainings
	Training Courses
	Courses for Database Administrators
	DBA1. Basic PostgreSQL administration
	DBA2. Advanced PostgreSQL administration

	Courses for Application Developers
	DEV1. A basic course for server-side developers
	DEV2. An advanced course for server-side developers

	Courses for DBMS Developers
	Hacking PostgreSQL

	The Hacker's Guide to the Galaxy
	News and Discussions
	Mailing Lists
	Commitfest
	Conferences

	Postgres Professional
	Services
	Commercial Solutions Based on PostgreSQL
	Vendor Technical Support
	Migration of Application Systems
	Custom development at PostgreSQL core and extension levels
	Arranging Trainings

