机器学习常用基本数学符号概括总结

序言

在阅读机器学习的描述时,我们无法避免遇到各种数学符号。通常只要方程中的一个项或一个符号片段即可完全影响我们对整个过程的理解。这可能非常令人沮丧,尤其是适用于来自开发领域的机器学习初学者。如果我们了解数学符号的一些基本领域和一些工作技巧,则可以取得进步。学完本文后,将了解:

  • 算术符号,包括乘法、指数、根和对数
  • 序列和集合的表示法,包括索引、求和和集合关系

概述

  • 数学符号
  • 算术符号
  • 希腊字母
  • 序列符号
  • 集合符号
  • 其他符号

数学符号

在阅读有关机器学习算法的资料时,将遇到数学符号。例如,符号可能用于:

  • 描述一个算法
  • 描述数据准备
  • 描述结果
  • 描述测试框架
  • 描述含义

这些描述可能出现在研究论文、教科书、博客文章等地方。通常术语定义清晰,但也有一些数学符号规范我们可能不熟悉。只要有一个术语或一个方程式不懂,我们对于整个方法的理解就会丢失。我自己就遇到过很多次这样的问题,这真是令人无比沮丧!以下我们将回顾一些基本的数学符号,这将有助于我们在阅读有关机器学习方法的描述时更好地理解。

算术符号

1. 简单算术

基本的算术运算符号写法。例如:
加法:24 + 1 = 25
减法:24 − 1 = 23
乘法:24 × 2 = 48
除法:24 ÷ 2 = 12,也可以 24 2 = 12 \frac{24}{2} = 12 224=12
:上述运算符号,对应的LeTax写法,如下:

加法:$24 + 1 = 25$
减法:$24 - 1 = 23$
乘法:$24 \times 2 = 48$
除法:$\frac{24}{2} = 12$

大多数数学运算都有相应的逆运算,例如减法是加法的逆运算,除法是乘法的逆运算。

2. 代数

我们经常想要抽象地描述操作,以便将它们与特定的数据或特定的实现分开。因此,我们看到了大量的代数使用,即使用大小写字母或单词来表示数学符号中的项或概念。在数学中,也经常使用希腊字母。每个数学子领域可能都有自己的保留字母,即始终具有相同含义的术语或字母。尽管如此,代数术语应该作为描述的一部分进行定义,如果它们没有定义,那可能只是描述得不好,而不是你的错。

3. 乘法符号

乘法是一个常见的符号,并且有几个简写形式。通常使用一个小写的"x"(×)或者一个星号"*"来表示乘法:c = a × b 或者 c = a ∗ b
可能会看到使用点表示法,例如:c = a · b
另外,也可能会看到没有运算符和之前定义的术语之间没有空格分隔的情况,例如:c = ab
:上述涉及到符号和公式对应的LeTax写法,如下:

$\times$
$\ast$
$c = a \times b$
$c = a * b$
$c = a \cdot b$
$c = ab$

4. 指数和平方根

指数

指数是一个数被提升到的幂。这种表示法是将原始数字或基数写在一个上面,第二个数字或指数写在一个上标中。例如:
2 3 = 2 × 2 × 2 = 8 2^3 = 2 \times 2 \times 2 = 8 23=2×2×2=8,也就是2的三次方或立方。
又如,一个数的平方: 2 2 = 2 × 2 = 4 2^2 = 2 \times 2 = 4 22=2×2=4

平方根

一个数的平方可以通过计算平方根来反转。例如: 4 = 2 \sqrt{4} = 2 4 =2
我们可以根据已知结果和指数,找到基数。实际上,根操作可以用来反转任何指数,只是默认的平方根假设指数为2,这在平方根符号前面用下标2表示。

:上述涉及到公式对应的LeTax写法,如下:

$2^3 = 2 \times 2 \times 2 = 8$ 
$2^2 = 2 \times 2 = 4$
$\sqrt{4} = 2$

5. 对数和自然常数e

对数

当我们将10提升到一个整数指数时,我们通常称这为数量级。例如: 1 0 2 = 10 × 10 10^2 = 10 \times 10 102=10×10
反转这个操作的另一种方法是通过计算结果100的对数,假设基数为10。在表示法中,写作: log ⁡ 10 ( ) \log_{10}() log10(),则 log ⁡ 10 ( 100 ) = 2 \log_{10} (100) = 2 log10(100)=2
在这里,我们可以根据已知道结果和基数,找到指数。这使我们能够非常容易地上下移动数量级。
假设基数为2的对数也常用,考虑到计算机中使用的二进制算术。例如: 2 6 = 64 2^6 = 64 26=64 log ⁡ 2 ( 64 ) = 6 \log_2 (64) = 6 log2(64)=6

自然常数e

另一个流行的对数是假设自然基数 e e e e e e是保留的,是一个特殊的数字或常数,称为欧拉数(发音为oy-ler),它指的是一个具有实际无限精度的值。例如: e = 2.71828 … e = 2.71828\dots e=2.71828,将 e e e提升到幂称为自然指数函数: e 2 = 7.38905 … e^2 = 7.38905\dots e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绎岚科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值