Langchain 集成 Milvus

本文详细介绍了如何在Docker环境下部署Milvus单机版,安装可视化工具Attu,并通过Langchain库将Milvus集成到文本处理流程中,用于存储和检索深度学习生成的嵌入向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 安装 Docker

refer: https://docs.docker.com/engine/install/centos/

Milvus 会以容器方式启动,所以先安装 Docker。(本示例使用的是 Alma Linux 9.2)

卸载旧版本,

sudo yum remove docker \
                  docker-client \
                  docker-client-latest \
                  docker-common \
                  docker-latest \
                  docker-latest-logrotate \
                  docker-logrotate \
                  docker-engine

设置存储库,

sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

安装 Docker 引擎,

sudo yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

启动 Docker,

sudo systemctl start docker

通过运行 hello-world 映像来验证 Dock

### 如何在 Langchain集成和使用 Milvus #### 1. **LangchainMilvus 的基本概念** Langchain 是一个用于构建大语言模型应用的框架,而 Milvus 是一款专门设计用于向量数据库管理的工具。通过将两者结合,可以高效地存储、索引和检索高维向量数据[^1]。 --- #### 2. **安装必要的依赖** 为了使 Langchain 能够与 Milvus 正常交互,需要先安装 `langchain` 和 `pymilvus` 库。以下是命令: ```bash pip install langchain pymilvus ``` 如果计划使用 OpenAI 或其他嵌入模型,则还需要额外安装对应的 SDK,例如 `openai`。 --- #### 3. **连接到 Milvus 数据库** 在 Langchain 中,可以通过创建一个 `Milvus` 实例来完成与 Milvus 的连接。以下是一个简单的代码片段: ```python from langchain.vectorstores import Milvus from pymilvus import connections, utility # 连接至 Milvus 服务 connections.connect("default", host="localhost", port="19530") # 如果集合已存在则删除它(仅限测试环境) if utility.has_collection("my_collection"): utility.drop_collection("my_collection") # 初始化 Milvus 向量存储实例 vectorstore = Milvus( embedding_function=None, # 可选:指定嵌入函数 connection_args={"host": "localhost", "port": "19530"}, collection_name="my_collection" ) ``` 此部分展示了如何建立基础连接以及初始化一个新的集合[^2]。 --- #### 4. **定义 Schema 并加载数据** 在实际操作中,通常需要为文档字段定义模式(schema)。下面是一段示例代码,演示如何加载文本数据并将其转换为向量形式存入 Milvus: ```python from langchain.embeddings.openai import OpenAIEmbeddings # 使用 OpenAI Embedding Function embeddings = OpenAIEmbeddings() texts = ["这是一条测试记录.", "这是另一条不同的记录."] # 输入文本列表 # 将文本添加到 Milvus 集合中 ids = vectorstore.add_texts(texts=texts, embeddings=embeddings) print(f"成功插入 {len(ids)} 条记录.") ``` 这里利用了 OpenAI 提供的嵌入功能生成每段文字的特征表示,并最终保存到目标集合里[^3]。 --- #### 5. **执行相似性搜索** 一旦完成了数据导入工作之后,就可以开始尝试查询最接近给定条件的结果集啦! ```python query_text = "寻找相关内容" search_results = vectorstore.similarity_search(query=query_text, k=2, search_params={}) for result in search_results: print(result.page_content) ``` 上述脚本实现了基于输入字符串进行最近邻查找的功能,其中参数 `k` 控制返回结果的数量[^4]。 --- ### 总结 以上便是关于怎样借助 Langchain 工具包实现同 Milvus 协作的一个简要介绍。从初步搭建直至具体应用场景均有涉及,希望能够帮助您更好地理解整个流程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值