推荐系统-协同过滤算法

本文深入探讨了Model-Based协同过滤算法,包括基于回归模型的协同过滤,详细讲解了Baseline预测方法及其损失优化策略,如梯度下降和交替最小二乘法。此外,还介绍了基于矩阵分解的CF算法,如LFM的隐语义模型。最后,文章提到了基于内容的推荐算法,特别是基于TF-IDF的特征提取技术,用于理解文档中词语的权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Model-Based 协同过滤算法

分类如下:

  • 基于分类算法,回归算法,聚类算法
  • 基于矩阵分解的推荐
  • 基于神经网络算法(深度学习不需要做特征)
  • 基于图模型算法

基于回归模型的协同过滤

Baseline:基准预测

在这里插入图片描述
对于损失优化的方法

  • 梯度下降法
  • 交替最小二乘法

基于矩阵分解的CF算法

LFM 原理解析:隐语义模型核心思想是通过隐含特征联系用户和物品。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值