用小浣熊助我成功完成CPFS数据分析任务

最近领导给我派了一个活,让我对中国家庭追踪调查(China Family Panel Studies,CFPS)数据进行分析,按照个体、家庭、社区三个层次的数据,得出一个分析结果,并把结果生成一个图形化的图表展示中国社会、经济、人口、教育和健康的变迁,并对后续的社会、经济、人口、教育和健康的变迁做出一个预测。这要是手工来做,得多麻烦哦。。。正当我愁眉苦展的时候遇见了小浣熊,然后我就。。。成功搞定,并把后续的时间用来摸鱼。。。

🎈和我一起上手小浣熊

办公小浣熊」基于AI能力,致力于为您提供一个一站式的创作空间和个性化的知识库。

  • 文档编辑器:在写作的过程中,您可以随时调用AI帮您检索、生成、修正内容
  • AI数据分析:能够执行复杂的数据处理、数据分析和可视化展示,洞察数据和文档中的关键信息
  • 个人知识库:轻轻松松管理您的文件、文档和数据,并基于知识库打造符合您写作风格的专属AI
    在这里插入图片描述
    进入办公小浣熊,登录之后,开始体验强大的数据分析能力
    在这里插入图片描述
    点击立即体验,开始小浣熊之旅吧!

🎈来看我怎么干活的

公司是一家国企,这次领导派我处理的数据为个体、家庭、社区三个层次的数据,‌CFPS样本覆盖25个省/市/自治区,目标样本规模为16000户,调查对象包含样本家户中的全部家庭成员。

🍮数据预处理

首先点击左上角的数据分析,然后点击下方输入框中的链接按钮,选中我们的个体、家庭、社区三个文件的数据进行上传,本次教程我仅拿个人的数据进行举例:
在这里插入图片描述

数据上传完之后开始进行数据的清洗,缺失值处理、去除重复值,如下图,我的文件中存在缺失值,还有些部分存在重复的数据

在这里插入图片描述

对于缺失值和异常进行处理,并删除重复的值,经过小浣熊的分析制定相应的清洗策略。

对话记录如下:

问:对数据进行清洗?

答:数据清洗是数据分析中的重要步骤,通常包括以下几个方面:
1.处理缺失值:我们之前已经将-8替换为NN,现在需要决定如何处理这些缺失值。
2.处理异常值:识别并处理数据中的异常值。
3.数据一致性检查:确保数据的一致性,例如日期格式、编码等。
4.删除重复数据:检查并删除重复的记录。
我们将按照这些步骤对数据进行清洗。
步骤1:处理缺失值我们可以选择删除包含大量缺失值的行或列,或者用均值、中位数等填充缺失值。
步骤2:处理异常值我们将使用统计方法(如Z-scor或IQR)来识别和处理异常值。
步骤3:数据一致性检查检查数据格式的一致性,特别是日期和分类变量。
步骤4:删除重复数据检查数据集中是香存在重复记录,并将其删除。
让我们开始执行这些步票。
从缺失值比例的检查结果来看,许多列的缺失值比例非常高,尤其是pid,©ode,id1s等列,缺失值比例接近或超过98%。这些列何能都对分析贡不大,我们可以考虑删除这些缺失值比例过高的列。此外,对于缺失值较少的列,我们可以选择用均值、中位数或其他适当的方法进行填充。
清洗策略:
1.删除缺失值比例超过90%的列:这些列可能对分析贡献不大。
2.对缺失值较少的列进行填充:使用均值或中位数填充数值型列,使用众数填充分类列。
接下来,我们格执行这些操作。

给出处理的结果如下:
image.png

🍮数据初步解读

为了对处理后的数据进行比较与差异分析,以及识别异常值和离群点,我让小浣熊对我的数据进行分析解读:
小浣熊从两个方面对我的数据进行分析解读,解读结果如下:

  1. 比较与差异分析
    描述性统计:生成数据的描述性统计信息,比较不同组之间的均值、中位数、标准差等。
    分组分析:根据某些关键变量(如 GENDER、AGE 等)对数据进行分组,并比较各组之间的差异。
  • 总体描述性统计:
    数据集中各变量的均值、标准差、最小值、最大值等已计算出来。例如,AGE 的平均值为 69.64 岁,标准差为 16.24 岁,最小值为 10 岁,最大值为 102 岁。
    GENDER 变量显示数据集中性别比例接近均衡,GENDER 的均值为 0.41(0 表示女性,1 表示男性)。
  • 按性别分组的统计:
    我们可以看到不同性别在各个变量上的差异。例如,男性和女性在 AGE、BIRTHY 等变量上的均值和分布可能存在差异。
  1. 异常值与离群点识别
    箱线图(Boxplot):使用箱线图识别各数值型变量中的离群点。
    Z-score:计算每个数据点的 Z-score,识别那些远离均值的异常值。
    IQR 方法:使用四分位距(IQR)方法来检测和标记异常值。
    image.png
    并给出了分析的结果:

    • Z-score 方法:
      识别出了一些异常值。例如,BIRTHY 和 AGE 列中有 16 个异常值,TAPE 列中有 204 个异常值。
    • IQR 方法:
      通过 IQR 方法检测到更多的异常值。例如,IWMODE 列中有 386 个异常值,PGB1 列中有 490 个异常值。

    这些结果表明,部分列中存在显著的异常值和离群点,可能需要进一步分析或清理。

🍮数据可视化

在我不提示的情况下,直接让小浣熊给我进行图形化展示,他会给我很多不同的要生成图形结果,但是由于我需要的是直方图和条形图,通过进一步说明我的需求,小浣熊按照我的要求生成了相应的图表数据。

我的需求:对文件中的数居和处理的结果进行图形化展示?
小浣熊的答复

为了对文件中的数据和处理结果进行图形队化展示,我们可以采用以下几种图表类型:1.箱线图(Boxplot):展示各数值型变量的分布及离群点。
2.直方图(Histogram):展示数据的分布情况,例如年龄分布、出生年份分布等。
3.散点图(Scatter P川ot):展示两个变量之间的关系,例破如年龄与退休状态之间的关系。
4.条形图(Bar Chart):展示分类变量的频率分布,例如性别的分布.
我们将生成这些图表,以直观地属示数据的持征和清洗后的结果。
图表1:箱线图展示数值型变量的分布及离群点。
图表2:直方图展苏示AGEBIRTHY的分布。
图表3:散点图展示AGERETIRE之间的关系。
图表4:条形图展示GENDER的分布。
让我们开始生成这些图表。

我的需求:帮我按年龄和性别对用户表中的数据和上一个步骤处理的结果生成图表

  1. 直方图:展示了 AGE(年龄)和 BIRTHY(出生年份)的分布情况,显示了数据的集中趋势和分散程度。在这里插入图片描述
  2. 条形图:展示了 GENDER(性别)的分布,显示了数据集中男性和女性的比例。
    在这里插入图片描述

🍮数据开始建模

我的需求:按人口统计学分析建模分析 和 用聚类模型分析建模

小浣熊的答复
人口统计学分析通常涉及对年龄、性别、教育水平、收入等变量的分布及其相互关系的分析。为了进行人口统计学分析建模,我们可以采取以下步骤:
描述性统计分析:对主要人口统计学变量(如年龄、性别、教育水平)进行详细的描述性统计。
可视化分析:使用图表(如直方图、箱线图、饼图等)来展示这些变量的分布和关系。
相关性分析:分析不同人口统计学变量之间的相关性,例如年龄与教育水平的关系。
分群分析:使用聚类算法(如K-means)对人群进行分群,以发现不同群体的特征。
在这里插入图片描述

🍮数据趋势预测

由于数据的保密性,本次展示出来的数据仅为单个文件的数据,并对该数据让小浣熊给出我应该预测的方向,并且把该预测方向的模型评估结果展示给我进行验证。
小浣熊的答复:
鉴于当前数据的性质,我建议我们进行以下预测:

  • ·预测年龄AGE:基于当前的特征,预测下一年的年龄分布。
  • ·预测是否退休RETIRE:如果我们能合理地处理和扩展数据,预测个体在下一年是否可能会退休我们将首先尝试预测AGE,并假设其他条件保持不变。接下来,我将构建一个回归模型来预测下一年的年龄。评估模型表现<(232.54086117139013.0.05951985351405942)回归模型的评估结果显示:
  • ·均方误差(MSE):232.54,这表示预测值与真实值之间的平方误差的平均值。
  • ·决定系数®:0.06,这表示模型只能解释约6%的目标变量的方差,说明模型的预测能力较弱。

当我上传了2008年-2024年的数据内容的时候,小浣熊按照时间序列预测的方法给出我一个2025年预计数据的展示,由于预测的数据比较真实,涉及到隐私,就不展示了。。。万一老板发现了,又该CPU我了,有这时间摸会鱼美滋滋。。。

🍮数据分析报告生成

针对上述处理之后的结果,我想让小浣熊根据生成的结果生成数据分析报告,并通过在线编辑的方式来进行细微的调整,调整之后生成报告文件并导出,以下是我的操作过程:

  1. 生成中国家庭追纵调查的数据分析文字报告
    image.png

  2. 创建报告文档并在线编辑导出
    image.png

从头到尾全在网站上进行操作,直到最后输出文字报告,你说6不6!!!

🎈办公小浣熊体验总结

总的方向:大功告成,撒花致谢🎆🎇🌟,经过我和小浣熊共同的努力,成功搞定了领导交给我的任务,并生成了我想要的结果。
屌炸天的优势
1、办公效率大大提升,节省我手动计算和分析的时间,不用自己构建复杂的Excel公式,这处理速度真的让我感受到人工智能的魅力。
2、自动返回并暂存数据清洗后的文件,方便后期精准数据分析,不用我再手动处理。
3、帮我自动分析了我想要的数据结果,生成了我想要的图表。
4、针对下一年的数据进行了相应的预测,不用我再一个个比对数据自己计算了,并且对分析结果给出了详细的说明。
5、这一点是非常的好,小浣熊会根据我上一步处理的方法给出我下一步要进行处理的建议,比如我进行处理之后,他会建议我要怎么进行深度处理。

不足之处:
1、应当根据我上传的文件联网分析该文件的使用方向,并给出准确的图表生成类型,不需要把数据按照所有的图表都生成。
2、在对文件的处理的时候尝试了多种处理方法但是没有成功处理,建议这种可以给用户更直观的提示,让用户自行检查一下数据。
3. “数据分析报告生成并在线编辑” 这个功能还有待完善,一般数据报告生成之后,用户都会进行细微的调整和下载,所以在报告生成之后应当提示用户是否生成报告文件或者在生成结果的下边添加一个明显的生成报告文件按钮。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值