DeepSeek本地部署教程

🍁 作者:知识浅谈,CSDN签约讲师&博客专家,华为云云享专家,阿里云专家博主,InfoQ签约作者
📌 擅长领域:全栈工程师、爬虫、ACM算法,大数据,深度学习
💒 公众号:知识浅谈
🔥 微信:zsqtcyl 联系我领取福利


DeepSeek是一款强大的知识检索和问答工具,通过本地部署,用户可以更加便捷地进行知识检索和问答操作。本文将详细介绍如何在本地部署DeepSeek,以便用户能够充分利用其强大的功能。

🎈环境要求

在本地部署DeepSeek之前,需要确保计算机满足以下环境要求:

  1. 操作系统:Linux(推荐)或Windows。
  2. Python版本:Python 3.7及以上。
  3. 依赖包:PyTorch(>=1.7.1)、Transformers(>=4.0),以及其他相关的库,如NumPy、pandas、scikit-learn等。

此外,还需要安装Ollama,这是运行DeepSeek模型的底层软件。

🎈安装步骤

  1. 下载并安装Ollama

    • 访问Ollama官网,选择适合自己操作系统的版本进行下载。
    • 下载完成后,双击安装包进行安装。安装过程中,请确保C盘有足够的空间,因为Ollama默认安装在C盘。
  2. 克隆DeepSeek代码

    • 打开终端或命令行窗口,使用git命令克隆DeepSeek的GitHub仓库:git clone https://github.com/your-repository/DeepSeek.git(请将your-repository替换为实际的DeepSeek仓库地址)。
    • 进入DeepSeek项目目录:cd DeepSeek
  3. 创建虚拟环境并安装依赖

    • 为了避免与其他项目产生冲突,建议创建虚拟环境。在DeepSeek项目目录下,运行以下命令创建虚拟环境:python3 -m venv deepseek-env(Linux)或deepseek-env\Scripts\activate(Windows)。
    • 激活虚拟环境后,安装DeepSeek所需的依赖库:pip install -r requirements.txt
  4. 下载预训练模型

    • DeepSeek可能需要一些预训练的模型来支持其功能。在项目目录下,运行以下命令下载预训练模型:python download_model.py
    • 用户也可以根据自己的需求选择合适的模型版本进行下载,如1.5b、7b、8b、14b、32b、70b或671b等。模型越大,对计算机的内存和显卡配置要求越高。
  5. 配置数据路径

    • 将需要处理的数据准备好,并根据config.json文件配置数据路径。DeepSeek通常接受文本数据或其他适合的格式作为输入。
  6. 启动服务

    • 如果DeepSeek提供了一个API服务器,可以使用以下命令启动它:python run_server.py
    • 另外,用户也可以在Python脚本中直接调用模型进行推理。例如:
    from deepseek import DeepSeekModel
    
    model = DeepSeekModel()
    result = model.predict(input_data)
    print(result)
    

🎈使用与调试

  1. 使用DeepSeek

    • 在成功部署并启动DeepSeek后,可以通过API服务器或直接在Python脚本中调用模型进行推理。
    • 如果DeepSeek提供了API接口,可以通过HTTP请求调用接口来获取预测结果。例如:
    import requests
    
    url = 'http://localhost:5000/predict'
    data = {'input': '你的输入数据'}
    response = requests.post(url, json=data)
    print(response.json())  # 获取预测结果
    
  2. 调试与优化

    • 根据项目需求进行调试和优化。如果DeepSeek支持GPU加速,请确保已安装NVIDIA驱动并正确配置PyTorch支持CUDA。
    • 在调试过程中,如果遇到依赖问题,可以尝试升级pip或使用--no-cache-dir重新安装依赖库。如果下载模型失败,请检查网络连接或尝试手动下载模型并指定路径。

🎈常见问题与解决方案

  1. 依赖库安装失败:确保所有依赖库都正确安装。可以尝试升级pip或使用--no-cache-dir重新安装依赖库。
  2. 模型下载失败:检查网络连接是否稳定。如果网络连接正常但下载失败,请尝试手动下载模型并指定路径。
  3. GPU加速问题:如果使用GPU进行加速,请确保计算机上安装了正确版本的CUDA和cuDNN。

🍚总结

大功告成,撒花致谢🎆🎇🌟,关注我不迷路,带你起飞带你富。
Writted By 知识浅谈

内容概要:本文档是关于DeepSeek这个强大的大语言模型部署简要教程,涵盖了部署所需的一系列操作指南。首先是准备工作阶段,详细列出了对于服务器的要求(包括操作系统为Ubuntu20.04及以上,至少16GB内存与推荐NVIDIA GPU加速等)、软件依赖如Python版本及CUDA(用于GPU加速时),以及安装部分必要工具。然后介绍如何获取项目相关的代码和模型,即克隆代码仓库并下载对应预训练模型到适当位置。接着,在创建好Python虚拟环境后,按照提示安装依赖。之后重点阐述了配置与启动服务的内容,这涉及到修改特定参数的配置文件以适应个人需求、利用给定指令运行服务,还有最后确认整个部署过程无误,包括发送测试请求来检验DeepSeek是否能够正常运作,并提供简单的查看相应回应结果的方法。除此之外还针对可能出现的问题提供了两种常见的解决方案。 适合人群:有Linux操作经验并对深度学习有一定兴趣或者工作需要将此类大型语言模型部署上线的技术从业者或相关研究人员。 使用场景及目标:适用于计划部署DeepSeek语言模型到自身业务系统或研究平台的人士;目的是帮助使用者顺利完成从准备阶段到最后验证成功的全部流程,在自身环境中顺利启动这一先进语言模型的服务,并能初步应对简单错误情况。 其他说明:部署DeepSeek涉及到一定复杂度的计算机软硬件协同工作,在按照本指南实践的同时要注意各个步骤之间可能存在连锁反应,尤其是一些容易被忽视的地方比如软件之间的兼容性、版本匹配以及服务器性能等都会极大地影响最终的效果,所以建议操作前先对全文熟悉,过程中细心谨慎地对待每一个环节。同时注意定期关注官方最新动态以便及时更新部署方式和技术细节以保障最佳使用体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值