Python实现「手势猜拳游戏」:好玩的实时机器学习项目

🍁 作者:知识浅谈,CSDN签约讲师&博客专家,华为云云享专家,阿里云专家博主,InfoQ签约作者
📌 擅长领域:全栈工程师、爬虫、ACM算法,大数据,深度学习
💒 公众号:知识浅谈
🔥 微信:zsqtcyl 联系我领取福利


本教程将带你实现一个实时手势猜拳游戏识别系统,使用Kaggle公开的「Rock-Paper-Scissors」数据集(包含石头、剪刀、布三种手势),全程仅需CPU即可运行。最终效果可通过摄像头实时识别手势,并与电脑进行猜拳对战!


🎈项目亮点

  • 趣味互动:通过摄像头实现真人猜拳对战

  • 轻量模型:专为CPU优化的微型卷积神经网络(仅0.5MB)

  • 即用数据集:使用TensorFlow官方维护的公开数据集

  • 工业级技巧:包含数据泄露预防、类别平衡处理等实战技巧


🎈环境准备

  1. 打开Pycharm,新建项目文件夹
  2. 安装所需依赖库
    # 安装所需库(Python 3.8+)
    pip install numpy matplotlib opencv-python tensorflow-cpu
    

🎈数据集说明

使用TensorFlow Datasets内置的「Rock-Paper-Scissors」数据集:

  • 总样本量:2,892张RGB图像(300x300像素)

  • 类别分布:

    • Rock(石头): 840张

    • Paper(布): 840张

    • Scissors(剪刀): 1212张

  • 数据特点:包含不同肤色、手势角度和背景环境


🎈完整实现代码

📍自动下载并加载数据集
import tensorflow as tf
import tensorflow_datasets as tfds

# 自动下载数据集(首次运行需要等待)
dataset, info = tfds.load('rock_paper_scissors', 
                         split=['train', 'test'],
                         as_supervised=True,
                         with_info=True,
                         shuffle_files=True)

# 提取训练集和测试集
train_ds, test_ds = dataset[0], dataset[1]

# 查看数据集信息
print(f"训练集样本数: {
     info.splits['train'].num_examples}")
print(f"测试集样本数: {
     info.splits['test'].num_examples}")
📍数据预处理与增强
def preprocess(image, label):
    # 统一尺寸 + 归一化
    image = tf.image.resize(image, (150, 150))
    image = tf.image.rgb_to_grayscale(image)  # 转为灰度图减少计算量
    return image/255.0, label

# 配置数据管道
BATCH_SIZE 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值