Spring AI 结合DeepSeek使用教程

Spring AI 结合DeepSeek使用教程

一、环境搭建与项目初始化

  1. 创建Spring Boot项目

    • 使用IDEA或Spring Initializr创建项目,选择JDK 17或更高版本(推荐21)。
    • 勾选依赖项:Spring WebLombok,Maven或Gradle作为构建工具。
    • 添加Spring AI依赖(以DeepSeek为例):
    • deepseek 作为引入依赖
    <properties>
        <java.version>17</java.version>
        <spring-ai.version>1.0.0</spring-ai.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-starter-model-deepseek</artifactId>
        </dependency>
    
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>1.0.0</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>
    
  2. 配置API密钥
    application.yml中配置模型服务(以DeepSeek为例):

    server:
      port: 8080
    spring:
      ai:
        deepseek:
          api-key: sk-your-api-key
          base-url: https://api.deepseek.com/v1
          chat:
            options:
              model: deepseek-chat
    
    

二、基础功能实现

  1. 调用大模型生成文本
    • 通过chatModel发送请求:
         @RestController
         public class ChatController {
             private DeepSeekChatModel chatModel;
         
             @Autowired
             public ChatController(DeepSeekChatModel chatModel) {
                 this.chatModel = chatModel;
             }
         
         
             @GetMapping("/ai/generate")
             public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
                 return Map.of("generation", chatModel.call(message));
             }
         
             @GetMapping("/ai/generateStream")
             public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
                 var prompt = new Prompt(new UserMessage(message));
                 return chatModel.stream(prompt);
             }
         
         }
      
    • 启动应用后,访问http://localhost:8080/ai/generate?message=写一首春天的诗即可获取响应。
      响应结果如下:
      在这里插入图片描述

🍚总结

大功告成,撒花致谢🎆🎇🌟,关注我不迷路,带你起飞带你富。
Writted By 知识浅谈

### 关于 Spring AIDeepSeek 集成的相关信息 目前,Spring Boot 并未直接提供名为 “Spring AI” 的官方模块或框架[^1]。然而,Spring 生态系统支持通过其现有的扩展机制(如 Spring Data、Spring Cloud 或 Spring WebFlux)来构建机器学习和人工智能应用程序。开发者可以利用这些工具与外部的深度学习库(如 TensorFlow、PyTorch 或 Hugging Face Transformers)进行集成。 DeepSeek 是一种基于 Transformer 架构的大规模语言模型,专注于生成高质量的自然语言处理 (NLP) 输出[^3]。它能够执行多种任务,包括但不限于文本生成、情感分析、问答系统以及对话代理开发。为了将 DeepSeek 集成到 Spring 应用程序中,通常可以通过 RESTful API 或 gRPC 接口实现通信。以下是可能的技术栈: #### 技术架构概述 - **API 调用层**: 使用 `RestTemplate` 或 `WebClient` 来调用 DeepSeek 提供的服务端点。 - **数据传输对象 (DTO)**: 定义 Java 类以映射请求参数和响应结构。 - **服务编排**: 创建业务逻辑层以封装对 DeepSeek 的调用并返回结果给前端应用。 下面是一个简单的代码示例展示如何从 Spring Boot 中调用远程 NLP 服务: ```java import org.springframework.web.client.RestTemplate; import org.springframework.http.ResponseEntity; public class AiService { private final RestTemplate restTemplate = new RestTemplate(); public String generateText(String prompt){ ResponseEntity<String> responseEntity = restTemplate.postForEntity( "http://deepseek-api/generate", "{\"prompt\":\""+prompt+"\"}", String.class); return responseEntity.getBody(); } } ``` 此片段展示了基本 HTTP POST 请求发送至假设存在的 DeepSeek 文本生成功能的方式。实际部署时需替换 URL 地址及 JSON payload 结构为具体服务商文档所指定的形式。 另外值得注意的是,在设计此类系统的法律合规性和伦理考量方面也非常重要[^4]。确保遵循适用的数据保护法规,并妥善管理用户隐私权等问题。 ### 总结 虽然没有专门针对 Spring AI 的产品线,但借助灵活强大的 Spring Framework 可轻松达成与先进的人工智能技术相结合的目标。对于像 DeepSeek 这样的预训练模型而言,主要挑战在于网络协议适配和服务性能优化上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值