强化学习-sarsa教程

本文深入探讨了强化学习中的Sarsa算法,解析了Sarsa在线学习的特点及其更新策略,并介绍了Sarsa(lambda)的回合更新与脚步衰减值。此外,文章还详细讲解了DQN(Deep Q Network)的基本原理,包括其与Q-learning的区别、固定Q目标和记忆库等关键特性,并提到了DQN在Tensorflow中的神经网络实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sarsa

  • 与Q-Learning的不同:离线学习,
  • Sarsa:是实施每个估计,在线学习,’保命为主‘

Sarsa 算法更新

  • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RxaXDWEF-1591684153065)(evernotecid://5E01CD28-C4C7-40C9-89D8-B40DB3CF5295/appyinxiangcom/11012738/ENResource/p13380)]

sarsa 思维决策

Sarsa(lambda)

  • 回合更新
  • lambda 是脚步衰减值, 都是一个在 0 和 1 之间的数,认为距离奖励越远的步骤越不重要。
  • 如果 lambda = 0, Sarsa-lambda 就是 Sarsa, 只更新获取到 reward 前经历的最后一步.
  • 如果 lambda = 1, Sarsa-lambda 更新的是 获取到 reward 前所有经历的步.

DQN

  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI拉呱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值