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ABSTRACT

Radiometric fingerprinting systems leverage unique physical-
layer signal characteristics originating from individual hard-
ware imperfections to identify transmitter devices. The pure
passive nature of such mechanisms entirely relieves the over-
head of identification and authentication operations from the
end devices, which fits well with resource-constrained appli-
cations such as wireless sensor networks. However, existing
systems are limited by the need for specialized hardware and
non-trivial computations to extract fingerprinting features,
hindering their pervasive deployment. For the first time, we
ask the question whether it is feasible to implement an entire
radiometric fingerprinting system on a low-cost and low-power
embedded system on chip (SoC). We introduce ORrF, which
demonstrates the feasibility of such a system on an embed-
ded SoC that costs less than 6 dollars. Our experiments in an
anechoic chamber show that Orr achieves over 92% average
accuracy in identifying one out of 32 different transmitter
devices.

CCS CONCEPTS

« Computer systems organization — Embedded soft-
ware; « Networks — Mobile and wireless security.
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1 INTRODUCTION

Recent decades have witnessed a massive increase in applica-
tions based on sensors that monitor physical environments
and communicate wirelessly. These low-cost sensors are usu-
ally small embedded platforms with limited computational
capabilities, memory, and communication bandwidth. Au-
thentication and identification operations are challenging
for such devices. In response, radiometric fingerprinting has
emerged as a pivotal technology. Operating passively, this
technique demands no additional resources from end devices,
making it suitable for embedded systems. Beyond its use as
a complement or replacement to cryptographic approaches,
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Figure 1: We demonstrate the practicability of implementing an
entire radiometric fingerprinting system on a single low-power and
low-cost SoC.
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it uniquely identifies devices without relying on bit-level
identities, broadening its utility in fields where unobtrusive
identification is of the essence.

At its core, radiometric fingerprinting leverages the inher-
ent transmitter imperfections that are embedded within the
radiated signal. These anomalies, unique to each transmit-
ter, form the basis of identification. However, isolating these
subtle deviations demands both high-resolution wireless sig-
nal acquisition and substantial computational capacity [1-
4]. Furthermore, the process requires intricate algorithms
capable of effective feature extraction and subsequent clas-
sification [5, 6]. Implementing such a system on embedded
devices with limited resources poses a demanding task.

Earlier work on radiometric fingerprinting predominantly
relied on the use of software-defined radio and dedicated
computer processing. This approach, while effective, was pri-
marily restricted by the extensive resources and infrastruc-
ture it demanded [7]. In this work, we present and evaluate a
comprehensive radiometric fingerprinting chain, from signal
acquisition to feature extraction and classification, within
the confines of an embedded device. Apart from simplifying
the previously complex setup, this also opens up a plethora of
novel application scenarios, creating unprecedented oppor-
tunities for the use of radiometric fingerprinting in diverse
environments where cost, power consumption, and resource
constraints are critical factors.

In this study, we present OrF, an on-board radiometric fin-
gerprinting system that achieves practical implementation
on a low-cost nRF52833 commercial off-the-shelf (COTS)
system on chip (SoC) from Nordic Semiconductor. We sum-
marize the key highlights of the results as follows:

o Orr is the first demonstration of a complete on-board finger-
printing pipeline including signal acquisition and feature
extraction on such an affordable embedded system.
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e The design of ORF considers constraints in terms of memory
and computational resources. It takes 1.2s and 12m]J of
energy to fingerprint one frame.

e The overall performance of ORF is demonstrated by achiev-
ing an average accuracy of over 92% on a dataset collected
in an anechoic chamber consisting of 32 devices of four
different types.

The code for ORF is available under the MIT license to
facilitate further research and community collaboration !. It
includes application code for data recording and on-board
evaluation, scripts to facilitate batch recording, and Python
code to analyze the results.

2 RADIOMETRIC FINGERPRINTING ON
EMBEDDED SYSTEMS

Manufacturing imperfections and variances in hardware
components such as oscillators, amplifiers, capacitors, and re-
sistors result in unique fingerprints embedded in the wireless
signal, which can be used to identify transmitter devices.

2.1 Related Work

Implementing a radiometric fingerprinting system on an em-
bedded device involves three stages: accurate signal acqui-
sition, energy-efficient and memory contrained fingerprint
feature extraction, and classification to identify or authenti-
cate devices (see Figure 1). Among these, signal acquisition is
the primary bottleneck. Previous work estimates the signal
by statistical link quality metrics, such as received signal
strength indicator (RSSI) and link quality indicator (LQI)
provided by radio frequency (RF) transceiver chips with sam-
pling rates of up to 1 MS/s [8]. However, these estimates and
the sampling rate is insufficient for extracting meaningful
fingerprinting features. Efforts have also been made to facili-
tate lightweight implementations of feature extraction [9]
and classification [10]. Despite these advancements in the
individual stage, a complete embedded fingerprinting system
has not been successfully demonstrated.

Hua et al. demonstrate fingerprinting based on channel
state information (CSI) collected via a WiFi card from a lap-
top to identify devices [11]. The sampling approach has the
potential to be implemented on embedded devices but in-
volves computationally expensive feature extraction opera-
tions. Additionally, Jeong et al. reconstruct the physical-layer
waveform built on commodity WiFi devices and showcase
a fingerprinting application [12]. However, reconstructing
the signal waveform from a decoded bit sequence leads to
inevitable information loss, thereby limiting fingerprinting
performance.

Ihttps://codeberg.org/mguetschow/EWSN24-ORF
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2.2 Signal Acquisition Constraints

The fingerprinting system puts relatively high requirements
on the sampling rate and accuracy of the signal acquisition
process. Transient-based features require in general a high
sampling rate (order of GS/s [1-3]), while a sampling rate
equal or slightly higher to the Nyquist rate is sufficient for
steady-state-based features extracted from the modulated
part of the signal [1, 5, 9]. Instead, they require high-accuracy
I/Q samples. The higher the sampling accuracy, the more
accurate the identification and the better the system’s scala-
bility. For this reason, fingerprinting typically requires dedi-
cated devices such as oscilloscopes, spectrum analyzers, or
software-defined radios for signal acquisition.

The rising support for the Bluetooth direction finding ex-
tension (DFE) functionality in COTS devices recently brought
the capability of I/Q sampling to embedded systems [13]. DFE
requires I/Q sampling to compare the phase shift between
signals from antennas separated by a known distance, al-
lowing for the estimation of the received signal’s direction.
Manufacturers such as Nordic Semiconductor, Texas Instru-
ments, and Silicon Labs have made I/Q samples accessible
through software APIs on SoCs. ORF demonstrates the feasi-
bility of configuring it as a general-purpose sampling block
for on-air frames and enables continuous I/Q sampling at
sufficient sampling rates of up to 8 MS/s. This advancement
opens up new possibilities for a wide range of applications
that require in-depth analysis of the physical-layer signal,
including but not limited to radiometric fingerprinting and
RF sensing.

2.3 Embedded System Resource Constraints

The feature extraction and classification stages require non-
trivial signal processing to be done in software. In embed-
ded systems, memory—especially random-access memory
(RAM)—is a precious resource, and its limited availability
restricts the amount of data that can be kept and processed
at once. Storing the signal samples, their corresponding in-
termediate values, and the final fingerprinting profiles has
relatively high RAM requirements. On the other hand, the re-
stricted read-only memory (ROM) space limits the type and
size of the machine learning model that can be considered
for the final classification stage.

Finally, the application of fingerprinting for access control
or other online services requires close to real-time perfor-
mance to handle smooth and efficient authentication and
identification. The signal processing, feature extraction, and
classification steps all present a certain computational com-
plexity. Despite the increasing support for machine learning
on modern SoCs, before this work, it has remained uncer-
tain if an accurate fingerprint classification pipeline can be
efficiently implemented on such devices.
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3 DESIGN AND SYSTEM

In this section, we present ORF, a comprehensive on-board
radiometric fingerprinting system, focusing on its architec-
ture and the various components involved. Referring to the
system design depicted in Figure 1, we start by discussing
the hardware support for signal acquisition. Next, we adopt
a resource-efficient pipeline to extract transmitter-specific
characteristics that can be used as fingerprints. In the end,
we introduce an on-board classification algorithm, which
serves as the final stage of ORF.

3.1 1/Q Sampling enabled by DFE

The Bluetooth DFE allows a receiver to determine the direc-
tion of a peer device, relying on an antenna array employed
either at the transmitter or at the receiver, and a constant
tone extension (CTE) after the CRC. To implement OrF, we
customize the radio peripheral configuration of an nRF52833
SoC with Bluetooth DFE support and re-purpose it as an I/Q
sampling block. We select the angle of departure (AoD) mode,
which disables antenna switching at the receiver. To reach
the sampling rate required to recover fingerprints, oversam-
pling is achieved using manual configuration of the sampling
rate, which can be adjusted from 0.25 MS/s up to 8 MS/s. In-
stead of CTE, we use the option to start sampling at the begin-
ning of the frame payload to sample the information-bearing
signal. Furthermore, to obtain continuous I/Q samples, we
discard guard and reference periods, thereby skipping the
inherent sampling gap.

nRF52833 supports Bluetooth, IEEE 802.15.4, and propri-
etary radio modes at different data rates. It is feasible to
enable continuous I/Q sampling for all these modes. For OrF,
IEEE 802.15.4 is selected as the physical-layer protocol. We
leave the exploration of other protocols to future work. The
sampling duration is upper-bounded by a 6-bit field in the
DFECTRL1 control register, which represents multiples of 8 ps
slots, to a maximum duration of 504 ps. In ORF, we transmit
frames with 14 B random physical layer (PHY) payload. For
each frame, a signal clip of length 466.825 ys is collected at
8 MS/s, as depicted in Figure 2, resulting in 3736 I/Q sam-
ples. Furthermore, as the nRF52833 is a single-core SoC, both
sampling and processing in ORF are conducted on its ARM
Cortex-M4 processor.

3.2 Feature Extraction Pipeline

In this section, we present a memory-efficient processing
pipeline to extract fingerprinting features from the I/Q sam-
ples obtained in the previous stage. Considering the con-
straints in terms of memory and computational resources,
as well as the time requirements of an on-board system im-
plementation, ORF refers to a coherent-receiver architecture
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Figure 2: Frame structure and sampling period. Continuous I/Q sam-
ples are available from the physical header (PHR) with an offset
corresponding to the DFE guard and reference period, as well as the
first switch slot.

and leverages the side information of the demodulation to ex-
tract fingerprinting features for an incoming frame. Figure 3
shows a functional block diagram of such a pipeline. The
fingerprinting features are either extracted from by-products
or the end-product of successful receiver synchronization.
Synchronization using the I/Q samples collected on-board
is challenging due to the missing synchronization header
(SHR) and the limited number of samples.

Normalization and Matched Filter. To maintain the signal
amplitude despite variations in the received signal, an auto-
matic gain control (AGC) is included in the hardware radio
peripheral. In order to ensure stability in subsequent pro-
cessing, ORF normalizes the I/Q samples in-place to their av-
erage amplitude. Following the 802.15.4 standard, a half-sine
matched filter is employed through convolution to maximize
the signal-to-noise ratio (SNR) and to enhance the overall
signal quality. For memory-efficiency reasons, we deploy
a sliding window approach for the convolution operation,
only requiring a very small buffer (64 B) in RAM of a size
matching the pulse shape length.

Frequency Synchronization. As the second block of the
processing pipeline, the carrier frequency of the transmitter
is estimated and recovered. The first fingerprinting feature
is defined based on the difference among transmitters’ car-
rier frequencies. Under restrictions of a short signal clip,
ORF leverages the fast Fourier transform (FFT) algorithm in
conjunction with squaring and interpolation techniques to
achieve accurate frequency estimation. The 802.15.4 protocol
uses an OQPSK modulation scheme with a rate of 1 MHz.
The spectrum of the captured signal is spread between 0 and
1 MHz, making it difficult to estimate the carrier frequency
directly. To solve this problem, we square the information-
bearing OQPSK signal, which effectively removes the infor-
mation on the in-phase component. This operation results in
a single-tone signal at a frequency of 1 MHz. For a frequency
offset Af # 0, the peak is located at 1 MHz+2A f. Addition-
ally, Gaussian windowing and interpolation is applied to
shape the spectrum, providing a high frequency resolution
of less than 1 Hz [14]. The non-linear squaring and window-
ing transformation of the data requires an additional buffer
of size 32.8 kB in RAM.

Phase and Time Synchronization. The remaining finger-
printing features are based on the stable constellation with
clear clusters per symbol, which requires successful phase
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Figure 3: The architecture of the ORF feature extractor. The feature extraction pipeline refers to a typical coherent-receiver architecture and is
based on a by-product and the result of successful receiver synchronization.

and time synchronization. After the frequency synchroniza-
tion, the out-of-phase samples are rotated around the origin
in the constellation. A conventional method for phase syn-
chronization involves a digital phase lock loop (PLL), which
dynamically tracks and compensates for the phase differ-
ence sample by sample. However, a PLL—being a closed-loop
feedback control system—requires a non-zero acquisition
time to achieve phase lock [15]. The lack of the SHR and
the comparably short duration of the sampled signal present
challenges in obtaining enough stable samples using a PLL.
To overcome this challenge, ORF instead employs an iterative
approach that traverses possible phase offsets in steps and
selects the one closest to the expected constellation with zero
phase offset. This approach assumes that the phase offset
remains constant throughout the captured signal clip, which
is justified thanks to the previous high-resolution frequency-
synchronization block.

The remaining 90° phase ambiguity inherent in OQPSK
signals is resolved with a similar iterative method by corre-
lating the rotated samples with ideal samples of a known
sequence. Conventionally, the SHR is used for this purpose.
Since it is not part of the collected signal clip, ORF instead
leverages the decoded payload from the SoC receiver module
to generate the expected I/Q samples. For both parts of the
phase synchronization, only a copy of the original data is
rotated to avoid data loss due to rounding errors, reusing the
buffer from the previous block.

In the last block, time synchronization is performed using
a PLL together with a parabolic interpolator to determine
the optimal sampling instant for each symbol. Thanks to
successful phase synchronization, the acquisition time of
this PLL is significantly shorter. Since this block already
showed good results in a standard configuration, it has not
been further adapted in this work.

3.3 Feature Overview

Two categories of features are used in ORF: one feature cor-
responds to a by-product of the receiver synchronization
process, while the remaining features are extracted from the
constellation diagram obtained after frequency, phase, and
time synchronization.

3.3.1 Synchronization-based Features. Carrier frequency
offset (CFO). Due to the imperfection of hardware oscilla-
tors, the actual carrier frequency varies between different
transmitters. Using the receiver carrier frequency as refer-
ence, the CFO is defined as Af.

3.3.2 Constellation-based Features. After synchronization,
samples resemble a QPSK constellation diagram with one
symbol cloud {P;} per quadrant i € {1, 2,3, 4}. The centroid
of each cloud P; is defined as p;. We define constellation-
based features as follows:
I/Q offset (IQO) and I/Q skew (IQS). Hardware imperfec-
tions such as I/Q imbalance result in an asymmetric character
of the phase and magnitude errors. IQO quantifies how far
the center of the constellation diagram deviates from the
origin. In addition, IQS quantifies the effect of phase imbal-
ance, which skews the constellation diagram in the diagonal
direction.I B 4 o5 Batfs L+
QO—Z;Pi K= (1)
Constellation cloud shape (CCS). The shape of each sym-
bol cloud is captured by CCS features, which are defined
as the maximum magnitude and phase difference among
samples in each cloud.
CCSM; = max |P;| — min |P;|
CCSP; = max /P; — min /P; @)
Due to their similar shape, the CCS features of diagonally
opposite quadrants (1,3 and 2,4) are combined by averaging.
Error vector magnitude (EVM). The error vector of each
symbol is defined as e[k] = s[k] — p; to the corresponding
cloud centroid p;. s[k] is the collected symbol at timestamp
k and N is the number of symbols in the collected signal clip.

L3N e[k]P?
Z?:1 pi
3.4 On-board Fingerprint Classification

As the last stage of ORrF, a random forest classifier (RFC)
distinguishes between transmitter devices based on the ex-
tracted fingerprinting features. RFC is known for its speed
and capability to handle large datasets, and has shown effec-
tiveness in previous research [4]. In our work, we first train

EVM = 3)
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Figure 4: Memory footprint and classification performance of RFC with different configurations. Both are positively correlated with Ny and
Nirain- The number of subtrees has a higher impact on the model size, while not significantly improving the classification performance.

the RFC model with pre-collected fingerprint samples on an
x86-64 Linux computer using scikit-1learnin Python. Once
the model is well-trained, it is converted to C99 code using
emlearn [16]. For on-board deployment, the model complex-
ity is upper-bounded by the limited ROM space available on
the SoC. Meanwhile, a too simple model may fail to capture
the complexity of the data, resulting in poor performance.
Therefore, in Section 4.1, we will jointly evaluate the perfor-
mance and model size of different RFC configurations.

4 EVALUATION

We perform experiments to evaluate ORF from two aspects:
the classification performance and the resource consumption
in terms of memory occupation, processing time and energy
consumption.

Data Collection. We fingerprint four different types of
COTS sensor boards, with eight individual transmitters per
device type: TelosB (Texas Instruments CC2420 radio, in-
tegrated PCB antenna), Thunderboard Gecko (Silicon Labs
EFR32 SoC, ceramic antenna), nRF52840 DK, and nRF52840
Dongle (both Nordic Semiconductor SoCs, PCB antenna). We
collect signals in an anechoic chamber under ideal chan-
nel conditions to avoid any impact of the wireless channel.
We use one nRF52833 DK board as receiver and place each
transmitter at a distance of 1.3 m. We collect 1000 frames per
device and conduct fingerprint processing on board.

4.1 Classification Performance

To find an appropriate balance between performance and
memory usage, the converted model size in C and the classi-
fication performance are jointly evaluated for different RFC
model configurations. Figure 4 presents the results, which
are obtained using the same test set and training strategy
while varying the number of subtrees Ny and the amount
Nirain of frames per transmitter device used during training
(the depth of the RFC subtrees depends on the number of
training samples). The classification performance is given in
terms of true accept rate (TAR) and false accept rate (FAR). In
fingerprinting systems, the TAR represents the probability of
correctly classifying a device, while FAR is the probability of

incorrectly classifying an imposter as a certain device. Both
average and worst-case values of TAR and FAR are reported
for the entire device set. In this work, we use all extracted
features as inputs to the classifier. Further investigation into
feature engineering and selection is left for future research.

The results show that the average TAR converges to a
maximum value of around 93% with a large training set,
which indicates the effectiveness of the selected fingerprint-
ing features. To provide further insights, we consider the
configuration (Niree, Nirain) = (20, 160). In this configuration,
the average TAR is above 92% with a low average FAR of 7%.
Most of the devices are correctly classified with 100% TAR,
but three device pairs exhibit similar fingerprints and are
highly misclassified. Therefore, the worst-case TAR is only
58% and the worst-case FAR is 46%. Excluding one device out
of each pair of devices results in more than 99% average TAR
and below 1% FAR. For the task of device type classification,
all model configurations accurately classify the transmitter
device types, with an average TAR of over 98%.

4.2 Resource Consumption

When discussing the resource consumption of ORF, it is
worth noting that the objective of this work is to assess
the feasibility of implementing a complete fingerprinting
system on a single low-power SoC. Optimization for minimal
resource consumption is not the primary focus.

Memory Usage. When deploying a fingerprinting system
on an embedded SoC with limited memory, the memory foot-
print of the application becomes a critical consideration. The
chosen nRF52833 SoC provides 512 kB of flash/ROM memory
and 128 kB of RAM. The I/Q samples of each incoming frame
require 30 kB RAM for storage as float32_t values. In the
feature extraction pipeline, subsequent blocks can reuse the
memory space from previous blocks. By summing the I/Q
sample buffer size with the maximum RAM usage in the
pipeline, the total RAM space required by ORF is calculated
to be 62.8 kB. This is less than half of the available RAM,
allowing for practical deployment alongside other function-
alities. On the other hand, the size of the classifier model
is limited by the available ROM space. The code and static
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data for the rest of the ORF pipeline occupy approximately
100 kB, leaving a maximum of 400 kB for the classifier to
fit within. Out of various model configurations discussed
in the previous section, we choose (Niee, Nirain) = (20, 160)
occupying 210.4 kB.

Processing Time and Energy Consumption. The pro-
cessing time and energy consumption of ORF is investigated
using the following experiment: The pipeline is run 100 times,
monitoring the current draw using the nRF Power Profiler
Kit I in source meter mode with a constant supply volt-
age of 3V. The measurements are attributed to individual
pipeline blocks, indicated by a pulse on a GPIO pin. ORF
takes on average 1.2s to fingerprint one incoming frame.
The energy consumption of the whole pipeline amounts to
12.3 mJ, which is the equivalent of active listening on the
channel for roughly 0.6 s.

5 DISCUSSION

Compatibility. OrRr demonstrates one fingerprinting sys-
tem example for IEEE 802.15.4 utilizing the nRF52833 SoC.
The implementation of ORF is facilitated by the hardware
APIs inherent within the existing DFE functionality. For the
nRF52833 platform, I/Q samples can be collected in blue-
tooth low energy (BLE) mode as well. With access to the
physical layer waveform, diverse feature extraction blocks
can be implemented. In addition, the DFE functionality has
been adopted by other manufacturers, including Texas Instru-
ments and Silicon Labs, encompassing notable chipset series
such as CC2642, CC2652, EFR32, BG22, and BG24. Through
our correspondence with manufacturers’ technical support,
it has been affirmed that all these platforms are capable of
conducting I/Q sampling at a rate up to 8 MHz. This suggests
that ORF can be seamlessly transitioned to such platforms.

Practical System Design Challenges. In this work, we
focus on the embedded system aspect and acknowledge that
other practical system design aspects align with established
research. First, detecting unknown devices is crucial, which
can be addressed through advanced classifier design [17].
Second, the fingerprint is prone to environmental impacts
like complex multipath channels and co-channel interference.
Several works studied and proposed robust signal processing
modules to mitigate these effects[4]. ORF can potentially
be extended to integrate the aforementioned designs. The
primary bottleneck in the current implementation is memory
usage, mainly due to the classification model using a simple
RFC algorithm in C, which occupies several hundred kB.
Strategies such as optimized neural network architectures,
model compression techniques, and specialized frameworks
can be considered to address this. These optimizations can
free up memory for more complex classification models that
support robustness. In terms of scalability, an unpublished
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experimental study using the same features, but an USRP and
an off-board processing pipeline achieved approximately 97%
TAR with 140 devices. Compared to this study, we anticipate
slightly reduced scalability for on-board fingerprinting due
to the embedded signal acquisition and simplified feature
extraction.

6 CONCLUSION

OgrF showcases an on-board radiometric fingerprinting sys-
tem that is fully integrated on low-cost and low-power COTS
hardware. The signal acquisition, processing, and identifica-
tion of a single frame takes roughly one second and consumes
the equivalent energy of active channel monitoring for half
a second. ORF achieves an average TAR of over 92% on a
challenging dataset with 32 devices.
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