ChatTTS

!git clone https://github.com/2noise/ChatTTS.git
%cd ChatTTS
!pip install -r requirements.txt
!pip install pynini==2.1.5
!pip install WeTextProcessing
!pip install gradio
import ChatTTS
import torchaudio
import torch
import IPython.display as display

chat = ChatTTS.Chat()
chat.load_models(compile=False) # 设置为True以获得更快速度

inputs_cn = """ChatTTS 是一款强大的对话式文本转语音模型。它有中英混读和多说话人的能力。
的使用应遵守法律和伦理准则,避免滥用的安全风险。'
""".replace('\n', '')

wavs = chat.infer(inputs_cn, use_decoder=True)

torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)

display.Audio("output1.wav", autoplay=False)

ChatTTS: Text-to-Speech For Chat

GitHub - 2noise/ChatTTS

### ChattTS 的 IT 技术关联分析 ChattTS 是一种专注于对话场景的文本到语音合成(Text-to-Speech, TTS)模型,其核心功能在于通过输入文本生成自然流畅的语音输出。以下是关于 ChattTS 与 IT 领域技术关联的具体分析: #### 1. **多语言支持** ChattTS 支持多种语言处理能力,包括但不限于中文和英文[^2]。这种跨语言特性依赖于先进的自然语言处理(NLP)算法以及大规模的语言数据集训练。这表明 ChattTS 在构建过程中融合了机器翻译、语义理解等多种 NLP 技术。 #### 2. **高质量韵律控制** 该模型具备精细的韵律控制能力,能够模拟人类说话时的情感变化和节奏感。这一特征的背后涉及复杂的声学建模技术和深度学习框架的应用,例如 WaveNet 或 Tacotron 系列架构可能是其实现的基础之一。 #### 3. **大数据驱动** 为了达到优秀的性能表现,ChattTS 经过超过十万小时的数据训练过程。这意味着它利用了海量标注音频资料作为训练素材,这些数据通常来源于真实世界中的各种对话情境,从而赋予模型强大的泛化能力和适应不同风格的能力。 #### 4. **开源生态贡献** 除了核心技术外,ChattTS 还积极拥抱开放源码文化,在知名平台 HuggingFace 上分享项目成果并鼓励社区参与改进。这样的做法不仅促进了技术创新扩散速度加快,也为其他开发者提供了宝贵的学习资源和技术参考案例。 ```python import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") inputs = processor(text="Hello world!", return_tensors="pt") speech = model.generate_speech(inputs["input_ids"], vocoder=vocoder) # Save the generated speech to a file. torch.save(speech, "hello_world.wav") ``` 上述代码片段展示了如何基于预训练模型实现简单的 Text-To-Speech 功能,虽然这里使用的并非具体提到的 ChattTS ,但它代表了一类相似应用的实际操作方式。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值