文章目录
一、写在前面
消息队列的实现,主要有三个要点:
- 消息保序:保证消息的顺序消费。
- 重复消费:对重复消息的有效处理。
- 消息可靠性:保证消息不会因为服务器宕机而消失。
对于以上三个要点,其实redis的list和stream是可以做到的。
但是很多小伙伴也会使用发布/订阅模式来实现redis的消息队列,这样真的好吗?
下面咱们就一起分析一下,list、stream、发布/订阅模式做消息队列的可行性。
二、基于list的消息队列解决方案
使用list实现消息队列其实有一些坑的,这里我们慢慢剖析里面的坑并加以改进。
使用list基本实现消息队列
List 本身就是按先进先出的顺序对数据进行存取的,所以,如果使用 List 作为消息队列保存消息的话,就已经能满足消息保序的需求了。
生产者可以使用 LPUSH 命令把要发送的消息依次写入 List,而消费者则可以使用 RPOP 命令,从 List 的另一端按照消息的写入顺序,依次读取消息并进行处理。
1.消费者使用while(true)不断的尝试获取消息。
while(true) {
Object o = redisTemplate.opsForList().rightPop("list:topic");
if(o != null){
System.out.println(o);
}
System.out.println("消费者尝试获取消息");
}
2.生产者发送消息。
redisTemplate.opsForList().leftPush("list:topic", "我是订阅消息");
3.提出问题
在生产者往 List 中写入数据时,List 并不会主动地通知消费者有新消息写入,如果消费者想要及时处理消息,就需要在程序中不停地调用 RPOP 命令(比如使用一个 while(true) 循环)。如果有新消息写入,RPOP 命令就会返回结果,否则,RPOP 命令返回空值,再继续循环。
所以,即使没有新消息写入 List,消费者也要不停地调用 RPOP 命令,这就会导致消费者程序的 CPU 一直消耗在执行 RPOP 命令上,带来不必要的性能损失。
解决方案请继续往下看。
阻塞式消费,避免性能损失
Redis 提供了 BRPOP 命令。BRPOP 命令也称为阻塞式读取,客户端在没有读到队列数据时,自动阻塞,直到有新的数据写入队列,再开始读取新数据。和消费者程序自己不停地调用 RPOP 命令相比,这种方式能节省 CPU 开销。
1.消费者优化:
使用list阻塞式读取可以阻塞式读取list中的消息,避免while(true)不断的访问redis。
while(true) {
// 阻塞3秒钟
Object o = redisTemplate.opsForList().rightPop("list:topic", 3000, TimeUnit.MINUTES);
if(o != null){
System.out.println(o);
}
System.out.println("消费者尝试获取消息");
}
2.提出问题
使用while(true)总感觉并不是很优雅,有什么更好的方式可以替换while(true)呢?
解决方案请继续往下看。
替换while(true)
可以使用线程池来替换while(true)。
1.消费者优化
// 带有定时功能的线程池
ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
ScheduledFuture<?> scheduleTask = scheduler.scheduleWithFixedDelay(() -> {
// 阻塞3秒钟
Object o = redisTemplate.opsForList().rightPop("list:topic", 3, TimeUnit.SECONDS);
if(o != null){
System.out.println(o);
}
System.out.println("消费者尝试获取消息");
System.out.println(Thread.currentThread().getName() + "111" + new Date());
}, 1, 1, TimeUnit.SECONDS);//1秒初始化之后执行一次,以后每1秒执行一次(频率可以适当调节)
2.提出问题
list如何解决消息重复读取问题?
虽然说list只能读取一次,但是谁都无法保证生产者因为某种原因 会不会重复的生产相同的消息。
所以,基于redis的list,消费者只能自己本身来实现消息的幂等。
解决方案请继续往下看。
实现消息幂等
消息队列要能给每一个消息提供全局唯一的 ID 号;另一方面,消费者程序要把已经处理过的消息的 ID 号记录下来。
当收到一条消息后,消费者程序就可以对比收到的消息 ID 和记录的已处理过的消息 ID,来判断当前收到的消息有没有经过处理。如果已经处理过,那么,消费者程序就不再进行处理了。这种处理特性也称为幂等性,幂等性就是指,对于同一条消息,消费者收到一次的处理结果和收到多次的处理结果是一致的。
所以,该设计与redis本身无关,需要生产者与消费者达成一致协议,每一条消息生成一个唯一ID,用来判断重复消费问题。
保证消息可靠性
设想这样一个场景:
消费者收到消息之后,还没有处理完毕,消费者宕机了怎么办?
如果是Rabbitmq、Kafka这种消息队列,是有ack机制的,但是redis的list是没有这种机制的,怎么处理?
List 类型提供了 BRPOPLPUSH 命令,这个命令的作用是让消费者程序从一个 List 中读取消息,同时,Redis 会把这个消息再插入到另一个 List(可以叫作备份 List)留存。这样一来,如果消费者程序读了消息但没能正常处理,等它重启后,就可以从备份 List 中重新读取消息并进行处理了。
// 带有定时功能的线程池
ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
ScheduledFuture<?> scheduleTask = scheduler.scheduleWithFixedDelay(() -> {
// 阻塞3秒钟,并生成备份
Object o = redisTemplate.opsForList().rightPopAndLeftPush("list:topic", "list:topic:back", 3, TimeUnit.SECONDS);
if(o != null){
System.out.println(o);
}
System.out.println("消费者尝试获取消息");
System.out.println(Thread.currentThread().getName() + "111" + new Date());
}, 1, 1, TimeUnit.SECONDS);//1秒初始化之后执行一次,以后每1秒执行一次(频率可以适当调节)
但是以上要手动实现备份中哪些已经消费,哪些未被消费,实现起来还是比较麻烦的。。。
redis中有一种数据类型——stream,可以完美实现消息队列。
三、基于stream的消息队列解决方案(redis消息队列终极解决方案)
关于stream基本用法请移步:redis中stream数据结构使用详解——redis最适合做消息队列的数据结构
stream可以完美实现消息保序、自动生成消息唯一id、同时对消息的可靠性也有保障,提供了ack机制。
springboot使用stream实现消息队列
1.生产者不断生产消息
Random random = new Random();
Map<String, String> content = new HashMap<>();
content.put("id", "1");
content.put("name", "zhangsan");
content.put("age", String.valueOf(random.nextInt(1000)));
redisTemplate.opsForStream().add("stream:topic", content);
2.工具类
public String createGroup(String key, String group){
return redisTemplate.opsForStream().createGroup(key, group);
}
public String addMap(String key, Map<String, String> value){
return redisTemplate.opsForStream().add(key, value).getValue();
}
public String addRecord(Record<String, Object> record){
return redisTemplate.opsForStream().add(record).getValue();
}
public Long ack(String key, String group, String... recordIds){
return redisTemplate.opsForStream().acknowledge(key, group, recordIds);
}
public Long del(String key, String... recordIds){
return redisTemplate.opsForStream().delete(key, recordIds);
}
3.创建消费者1
此处为了简化,直接使用匿名内部类定义了个bean,实际开发时可以单独定义一个类。
/**
* 消费者A
*/
@Bean
public StreamListener consumer1(RedisStreamUtil redisStreamUtil){
return new StreamListener<String, MapRecord<String, String, String>>() {
@Override
public void onMessage(MapRecord<String, String, String> message) {
String stream = message.getStream();
RecordId id = message.getId();
Map<String, String> map = message.getValue();
System.out.println