提示词,这个在AI 最开始的时候,就被各种提起,如何写好提示词,如何优化提示词,按照什么格式输出输入等,零零碎碎有了解过,但是没有系统的整理过一些方法论,好像现在写提示词的方法就是通过写提示词让AI 帮你写提示,给定场景描述,让AI 给你写一段规范的提示词。或者现在也有很多提示词的平台,可以直接复制使用,这篇文章想整理一下提示词相关要注意的方法技巧,貌似现在谈这个有点过时了,但是还是想要总结下,输出倒逼输入。
网上搜各种提示词学习资料的时候发现了一个飞书云共享文档,十分推荐 ,内容十分全面: Docs
1.让AI 帮你写提示词
例如我让deepseek 给我生成一个根据需求文档输出用例的提示词,它很快就给出了很全的提示词输入输出规范,除此之外还有各种规则约束,边界值考虑场景等,还是非常完整的。这样看起来,写提示词的最快捷方式就是输入提示词让AI 帮你写提示词。
从上面AI 给的例子可以看出,提示词里面包含了角色设定,任务要求,输出格式规范,示例以及特殊要求这些,提示词的设计原则其实有一个STAR 框架
Specific (具体): 说明任务目标,避免模糊描述
Task (任务): 定义输出形式 (列表/代码/分析)
Action (行动): 明确步骤或思考过程要求
Role (角色): 指定专业身份视角
2.提示词框架
网上的关于提示词的框架还蛮多的,可参考网址:https://zhuanlan.zhihu.com/p/5182226589
下面列一些比较典型的框架:
1、Co-STAR框架
- Context :上下文
- Object :目的
- Style :风格
- Tone :语气
- Audience :受众
- Respone :回应形式
示例:
##Context(上下文)
在互联网营销的竞争中,吸引用户注意力是关键。为此,我们需要一个能快速生成创意且引人注目的营销文案的工具,以提高点击率和转化率。
##Objective(目的)
创建一款爆款文案生成器,帮助营销人员和内容创作者快速产生吸引眼球的广告文案,从而在激烈的市场竞争中脱颖而出。
##Style(风格)
文案风格需现代、年轻、充满活力,符合主流社交媒体平台的语言习惯,能够引起年轻用户的共鸣。
##Tone(语气)
语气积极向上,带有鼓励和启发的元素,同时兼具趣味性和亲和力,能够激发用户的好奇心和购买欲。
##Audience(受众)
主要面向互联网营销人员、自媒体运营者和小企业主,他们急需通过有效的文案来推广产品或服务。
##Response(回应形式)
希望AI能够提供多种格式的文案选项,包括但不限于标题、正文、和口号。每个文案建议包含500字范围内,以便于在各种广告平台上灵活使用。
2、RTF 框架
- Role : 角色
- Task :任务
- Format :格式
3、ROSES框架
Role :角色
Objective :目标
Scenario :场景
Expected Solution : 预期解决方案
Steps :步骤
_假设您是一个软件开发团队的负责人,想要了解如何提高团队的协作效率。_
_角色:“__假设你是一个具有丰富经验的软件开发团队协作专家。”_
_目标:___“_我想了解如何提高我团队的协作效率。_”__
_场景:___“_我们的团队分布在不同的地区,通常依赖于在线工具来协作。_”__
_预期解决方案:___“_我期望能收到一些实用的策略和工具推荐,以帮助提高我们团队的协作效率。_”__
_步骤:___“_请列出实施每个推荐策略的具体步骤,并解释如何使用推荐的工具。_”__
4、CARE框架
假设您是一家软件开发公司的项目经理,您的团队将负责开发一个新的移动应用程序。以下是一个可能的 CARE 提示词实例:
上下文 (Context):
我们的客户是一家大型零售商,他们想要一个能够提高在线销售和客户互动的移动应用程序。
行动 (Action):
设计和开发一个用户友好的移动应用程序,集成社交媒体共享功能,推送通知和在线购物功能。
结果 (Result):
应用程序的发布促使在线销售增加了 25%,并且客户满意度评分提高到 4.5/5。
示例 (Example):
提供一种__移动应用程序__样例(例如竞品拼多多的首页设计)
3.谷歌提示词最佳实践:
明确意图:始终清楚地传达最重要的内容或信息。
构建提示词:首先定义其角色,提供上下文 / 输入数据,然后给出具体指令。
参照例子:为模型提供具体的、多样化的例子,帮助它产生更准确的结果。
限制输出范围:使用限制条件确保模型的输出与指令紧密相关。
任务分解:对于复杂任务,将其分解成一系列更简单的提示词。
质量监控:指导模型在生成响应之前对其进行评估或自检。
逐步思考:针对复杂问题,引导模型按照逐步的逻辑推理输出结果。
关键要点:充分发挥创意,开放思考,随着技术的发展,不断适应和调整。
4.吴恩达系列提示词工程介绍
b站关于提示词工程播放量最多的还是吴恩达相关的,下图来源于别人做的这期视频的笔记:
B站推荐【ChatGPT提示词工程师】教程!附课件代码,更适合大模型入门必看吴恩达的教程,微调部署_哔哩哔哩_bilibili
核心的观点:
1、两个原则:编写清晰明确的指示和给模型足够的时间来思考
5.提示词实用技巧 (deepseek总结)
这个是deepseek 总结出来的技巧,还是完整的,每次写技术文章都有一种大可不必写的感觉,因为这种属于技术科普类的文章,AI 能以各种各样的你想要的形式通俗易懂的向你解释它的定义,方法论,并且结合了各种例子说明,现在大家要了解一个内容页不倾向于全网搜索看各种博客文章了,原来的百度搜索的方式大概很快是不是就要成为上个世纪的产物了。所以,写这种文章的最大意义,大概还是让自己对知识融合贯通吧,输入-> 输出,学习闭环。
1.指令分层法
适用场景:复杂任务拆解
请按照以下步骤操作:
1. 分析用户需求:用户说"我想减肥但管不住嘴"
2. 识别核心问题(从心理学和营养学角度)
3. 给出3条可落地的解决方案,每条包含:
- 具体方法
- 科学依据
- 实施难度评级(1-5分)
4. 用表格形式呈现最终建议
2.角色扮演法
适用场景:专业领域输出
[角色设定]
- 身份:拥有20年经验的最高法院法官
- 任务:用法律术语分析以下案件争议点
- 风格:严谨但富有同理心,引用中国《民法典》条款
[案件描述]
王某网购手机遭遇欺诈...
3.示例引导法
适用场景:风格/格式控制
请根据示例格式续写故事:
示例:
输入:主题=太空探险,风格=悬疑
输出:<故事开头>
"雷达上的不明信号每隔27秒准时出现,这已经是‘远征号’与地球失联的第3天。李默突然发现,氧气余量显示异常——数值竟在缓慢增加..."
任务:
输入:主题=人工智能觉醒,风格=黑色幽默
输出:
4.思维链
适用场景:复杂推理问题
请逐步思考并验证答案:
问题:如果3个人3天喝3桶水,9个人9天喝多少桶水?
分步解析:
1. 计算单人单日消耗量:3桶 ÷ 3人 ÷ 3天 = 1/3桶/人/天
2. 扩展人数和时间:1/3桶 × 9人 × 9天 =
3. 数学验证:比例关系是否线性?
4. 最终答案:
5.规避指令
适用场景:内容安全/质量控制
请撰写一篇关于加密货币投资的科普文章,要求:
- 不提及任何具体币种名称
- 包含至少3个风险评估维度
- 用「风险提示」模块结尾
- 避免使用专业术语,读者定位为中学生
6.元提示
适用场景:优化自身提示词 ,这个不就是写提示词的最便捷方式吗
你是一个提示词优化专家,请按以下流程处理:
1. 分析用户原始提示:"帮我写个Python爬虫"
2. 识别缺失要素(目标网站、数据类型、反爬策略等)
3. 生成3个改进后的提示词模板,包含占位符说明:
- 示例1:新手友好型
- 示例2:高难度反爬应对型
- 示例3:大数据量分布式爬取型
6.提示词的关键技术
参考文章: 大模型Prompt技巧全解析
除了上面deepseek总结的一些提示词的技巧,还有下面的一些可实践的技巧,感觉提示词工程就是各种各样的技能混合在一起使用不断调优,能达到最终期望效果的,五花八门, 就是好的提示词。
1、自我一致性 (Self-Consistency)
主要用于思维链提示中的推理路径选择
prompt = """Q:林中有 15 棵树。林业工人今天将在林中种树。完成后,将有 21 棵树。林业工人今天种了多少棵树?
A:我们从 15 棵树开始。后来我们有 21 棵树。差异必须是他们种树的数量。因此,他们必须种了 21 - 15 = 6 棵树。答案是 6。
Q:停车场有 3 辆汽车,又来了 2 辆汽车,停车场有多少辆汽车?
A:停车场已经有 3 辆汽车。又来了 2 辆。现在有 3 + 2 = 5 辆汽车。答案是 5。
Q:当我 6 岁时,我的妹妹是我的一半年龄。现在我 70 岁了,我的妹妹多大?
A:"""
# 模型会参考前面的推理示例对最后一个问题进行回答,并从多个可能的回答中选择最一致的答案
2、自动推理并使用工具 (ART)
ART 使模型能够自动生成包含推理步骤的程序,并且在需要时调用外部工具。
prompt = """计算 16 个苹果平均分给 4 个人,每人几个,再加上 3 是多少?
请生成解决这个问题的程序步骤。"""
# 模型会生成类似下面的程序步骤
# result = (16 / 4) + 3
# 然后可以在代码中执行这个程序步骤得到最终答案
3、自动提示工程师 (APE)
自动生成和筛选任务指令,再根据评估分数选择最佳指令
# 假设这里有一个生成指令候选项的函数 generate_candidates 和一个选择最佳指令的函数 select_best_instruction
article = "这里是一篇新闻文章的内容"
candidates = generate_candidates(article)
prompt = select_best_instruction(candidates) + " " + article
# 模型根据最终的 prompt 生成文章总结
4、自我反思 (Reflexion)
包含参与者,评估者和自我反思三个模型。
# 假设这里有参与者模型 actor、评估者模型 evaluator 和自我反思模型 reflexion
code = "这里是一段初始代码"
# 参与者模型生成尝试解决问题的代码和动作
result = actor(code)
# 评估者模型评价输出
score = evaluator(result)
# 自我反思模型根据评价结果生成改进建议
reflection = reflexion(score, result)
# 将改进建议应用到下一次的代码生成中,实现自我学习和提升
7.提示词网站
一些提供提示词模版的网站,可以节省人工编写提示词效率
1、way to agi : Docs (这个飞书云文档不错,推荐)
2、PromptPort - Navigate the Sea of Creativity with the Best Writing Prompts Around!
3、AI 工具合集:AI工具集官网 | 1000+ AI工具集合,国内外AI工具集导航大全
参考网站:大语言模型 - 提示词(Prompt)工程入门_提示词工程-CSDN博客
提示词网站:https://www.aishort.top/
AI 工具合集:AI工具集官网 | 1000+ AI工具集合,国内外AI工具集导航大全
智谱:智谱AI开放平台