【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)为什么需要Chain ?
【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)为什么需要Chain ?
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/148185942
🧠 一、大模型发展现状:从模型到系统
自 GPT 系列模型引爆 AI 革命以来,大语言模型(LLMs)已经具备了强大的语言理解与生成能力。但仅靠模型本身远远不够,我们还需要为其提供:
- 上下文记忆能力(Memory)
- 工具调用能力(Tool Use / Function Calling)
- 结构化思考路径(Reasoning Chain)
- 多组件协同工作流(Multi-step workflows)
这就是 LangChain 出现的背景:将 LLM 融入可组合的应用系统,形成Agent + Tool + Workflow 的新范式。
🔗 二、什么是 LangChain 中的 Chain?
Chain = “链式工作流”组件,即多个语言模型调用与操作步骤的组合。
通俗来说,Chain 就像「大模型应用的流水线」:
- 把复杂的任务拆分成多个小步骤(Prompt → LLM → 后处理)
- 将每个步骤串联成流程
- 自动管理输入输出、上下文传递、格式约束等问题
✅ 三、为什么需要 Chain?
问题 | 如果没有 Chain,你会遇到这些挑战 |
---|---|
1. 多步骤任务难以组织 | 比如“查询文档 → 提炼要点 → 格式化回答”,每一步都要手写 prompt 和手动串联,重复性高 |
2. 模型调用过程不可控 | 多轮调用之间信息丢失或格式错乱 |
3. 难以复用与维护 | 如果每次都写新逻辑,代码难维护 |
4. 缺乏结构化思维支持 | 多步推理难组织,容易混乱 |
- Chain 的出现正是为了解决这些问题。
🧰 四、LangChain 中 Chain 的核心作用
作用 | 说明 |
---|---|
标准化 Prompt 输入输出 | 封装 prompt 模板,规范输入变量与输出字段 |
自动化任务流程串联 | 将多个 LLM 调用组合成流程 |
支持逻辑复用与封装 | 一个 Chain 可以嵌套到另一个 Chain 中 |
支持工具调用与记忆管理 | 和 Agent、Memory、Tool 组件无缝集成 |
让 RAG 更结构化 | 文档检索 → 总结 → 回答,可被串联为一个 Chain |
🧪 五、简单示例:构建一个基础 Chain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# 定义 Prompt 模板
prompt = PromptTemplate(
input_variables=["topic"],
template="请写一段关于{topic}的引人入胜的开场白。",
)
# 创建 OpenAI LLM 实例
llm = OpenAI(model_name="gpt-3.5-turbo")
# 构建 Chain
chain = LLMChain(llm=llm, prompt=prompt)
# 执行 Chain
response = chain.run("人工智能")
print(response)
输出示例:
- “在不远的未来,人工智能不仅改变我们的工作方式,还悄悄重塑人类文明的底层逻辑……”
🔍 六、Chain 类型一览
Chain 类型 | 说明 |
---|---|
LLMChain | 单步调用,封装 prompt 和 LLM |
SequentialChain | 顺序调用多个 chain,前后传递数据 |
SimpleSequentialChain | 轻量版的顺序调用 |
RouterChain | 根据输入路由到不同子链 |
RetrievalQA Chain | 结合向量检索进行问答(典型 RAG) |
🚀 七、结合未来趋势:Chain 是 LLM 应用的基础设施
随着 AI 应用从「单轮对话」走向「任务驱动型系统」,Chain 不再是可选项,而是必须的:
- 支持RAG 应用系统
- 支持多工具 Agent
- 支持企业级知识管理
- 支持插件调用、多步计划执行(如 AutoGPT)
未来的大模型不再只是对话机器人,而是具备认知、记忆、计划、行动能力的智能体,而 Chain 是其神经系统的主干。
📌 总结:为什么需要 Chain?
- Chain 让 LLM 应用从「一次性调用」升级为「模块化可复用系统化任务流」。
它是构建复杂 AI 应用(如文档问答、内容生成、对话 Agent、插件系统)不可或缺的中间件。