【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)为什么需要Chain ?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)为什么需要Chain ?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)为什么需要Chain ?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/148185942


🧠 一、大模型发展现状:从模型到系统

自 GPT 系列模型引爆 AI 革命以来,大语言模型(LLMs)已经具备了强大的语言理解与生成能力。但仅靠模型本身远远不够,我们还需要为其提供:

  • 上下文记忆能力(Memory)
  • 工具调用能力(Tool Use / Function Calling)
  • 结构化思考路径(Reasoning Chain)
  • 多组件协同工作流(Multi-step workflows)

这就是 LangChain 出现的背景:将 LLM 融入可组合的应用系统,形成Agent + Tool + Workflow 的新范式

🔗 二、什么是 LangChain 中的 Chain?

Chain = “链式工作流”组件,即多个语言模型调用与操作步骤的组合

通俗来说,Chain 就像「大模型应用的流水线」:

  • 把复杂的任务拆分成多个小步骤(Prompt → LLM → 后处理)
  • 将每个步骤串联成流程
  • 自动管理输入输出、上下文传递、格式约束等问题

✅ 三、为什么需要 Chain?

问题如果没有 Chain,你会遇到这些挑战
1. 多步骤任务难以组织比如“查询文档 → 提炼要点 → 格式化回答”,每一步都要手写 prompt 和手动串联,重复性高
2. 模型调用过程不可控多轮调用之间信息丢失或格式错乱
3. 难以复用与维护如果每次都写新逻辑,代码难维护
4. 缺乏结构化思维支持多步推理难组织,容易混乱
  • Chain 的出现正是为了解决这些问题。

🧰 四、LangChain 中 Chain 的核心作用

作用说明
标准化 Prompt 输入输出封装 prompt 模板,规范输入变量与输出字段
自动化任务流程串联将多个 LLM 调用组合成流程
支持逻辑复用与封装一个 Chain 可以嵌套到另一个 Chain 中
支持工具调用与记忆管理和 Agent、Memory、Tool 组件无缝集成
让 RAG 更结构化文档检索 → 总结 → 回答,可被串联为一个 Chain

🧪 五、简单示例:构建一个基础 Chain

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

# 定义 Prompt 模板
prompt = PromptTemplate(
    input_variables=["topic"],
    template="请写一段关于{topic}的引人入胜的开场白。",
)

# 创建 OpenAI LLM 实例
llm = OpenAI(model_name="gpt-3.5-turbo")

# 构建 Chain
chain = LLMChain(llm=llm, prompt=prompt)

# 执行 Chain
response = chain.run("人工智能")
print(response)

输出示例:

  • “在不远的未来,人工智能不仅改变我们的工作方式,还悄悄重塑人类文明的底层逻辑……”

🔍 六、Chain 类型一览

Chain 类型说明
LLMChain单步调用,封装 prompt 和 LLM
SequentialChain顺序调用多个 chain,前后传递数据
SimpleSequentialChain轻量版的顺序调用
RouterChain根据输入路由到不同子链
RetrievalQA Chain结合向量检索进行问答(典型 RAG)

🚀 七、结合未来趋势:Chain 是 LLM 应用的基础设施

随着 AI 应用从「单轮对话」走向「任务驱动型系统」,Chain 不再是可选项,而是必须的:

  • 支持RAG 应用系统
  • 支持多工具 Agent
  • 支持企业级知识管理
  • 支持插件调用、多步计划执行(如 AutoGPT)

未来的大模型不再只是对话机器人,而是具备认知、记忆、计划、行动能力的智能体,而 Chain 是其神经系统的主干

📌 总结:为什么需要 Chain?

  • Chain 让 LLM 应用从「一次性调用」升级为「模块化可复用系统化任务流」。

它是构建复杂 AI 应用(如文档问答、内容生成、对话 Agent、插件系统)不可或缺的中间件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值