【AI大模型学习路线】第三阶段之RAG与LangChain——第十八章(基于RAGAS的RAG的评估)为什么需要评估RAG?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十八章(基于RAGAS的RAG的评估)为什么需要评估RAG?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十八章(基于RAGAS的RAG的评估)为什么需要评估RAG?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/148709313


🧠 一、为什么要评估 RAG 系统?(RAG 评估的必要性)

🌐 背景:RAG 系统是 AI 大模型应用的关键形态

  • RAG(Retrieval-Augmented Generation)结合“信息检索”与“语言生成”能力,使大模型具备实时调用外部知识、减少幻觉、回答专业问题的能力,是目前大模型落地最广泛的方案之一。

❗ 但问题来了:仅靠大模型生成回答,不代表用户体验好!

  • RAG 系统=检索 + 大模型问答,但它涉及两个子模块:
模块问题
🎯 检索模块(Retriever)检索的文档是否真的相关?是否有帮助?
🤖 生成模块(LLM)回答是否正确、清晰、有逻辑?是否有幻觉?

所以我们必须解决:

  • ✅ 检索质量好不好?
  • ✅ LLM 是不是乱说(幻觉)?
  • ✅ 整体回答是否可信?是否可追溯?

📌 二、RAG 系统评估的挑战

传统 QA 的评估方法(如 BLEU、ROUGE)并不适用于 RAG,因为:

限制原因
❌ BLEU/ROUGE只关注词面相似度,无法评估“语义正确性”
❌ 只评回答忽略了“检索内容”对回答的影响
❌ 主观打分不可复现,难以大规模对比模型

✅ 三、解决方案:RAGAS(RAG Automatic Scorer)

  • RAGAS 是一种专门为 RAG 系统设计的自动化评估框架,评估内容覆盖从检索到生成的全过程。

🎯 它评估什么?

维度说明
Faithfulness(忠实性)回答是否忠实于提供的上下文?(防止 LLM 胡编)
Answer Relevancy(相关性)回答是否与问题相关?
Context Precision(上下文精度)上下文是否精准、包含答案?
Context Recall(上下文召回)是否漏掉了其他有用文段?

🧪 四、使用 Python 和 LangChain + RAGAS 评估 RAG 系统

🛠️ 安装依赖

pip install ragas langchain openai

📦 示例代码:评估一个 RAG 问答系统的结果

from ragas.metrics import (
    faithfulness,
    answer_relevancy,
    context_precision,
    context_recall
)
from ragas import evaluate
from langchain.evaluation.schema import QAEvalChain
from datasets import Dataset

# 构造一个包含问题、回答、上下文的数据集
data = {
    "question": ["RAG 是什么?"],
    "answer": ["RAG 是一种结合检索与生成的问答方法。"],
    "contexts": [["RAG combines information retrieval and LLMs to improve factuality."]],
    "ground_truth": ["RAG 是结合检索系统和语言模型用于问答的技术。"]
}

dataset = Dataset.from_dict(data)

# 使用 ragas 自动评估指标
result = evaluate(
    dataset=dataset,
    metrics=[faithfulness, answer_relevancy, context_precision, context_recall]
)

print(result.to_pandas())

📊 五、结果解释示例:

指标含义分数(示例)
Faithfulness是否忠实于检索内容0.98
Answer Relevancy回答是否切题0.95
Context Precision检索内容是否精准0.89
Context Recall是否漏掉重要信息0.76
  • ✅ 这能帮我们判断:是检索器的问题?还是生成模型的问题?从而针对性优化。

🔍 六、结合大模型发展趋势看:RAG 评估是模型可信化的关键一环

随着 GPT-4、Claude 3 等大模型在医疗、法律、金融等高风险领域应用,评估机制不再是“可选项”,而是:

  • 🔒 保证安全、可信、合规的基础设施!

🧩 七、总结一句话:

  • RAG 的评估是构建可信问答系统的关键环节,RAGAS 提供了自动、可量化的指标体系,让你可以精确识别检索器和生成器的问题,并用 Python 轻松集成到你的 LangChain 流程中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值