在VS Code中运行Python:基于Anaconda环境或Python官方环境

  本文介绍在VS Code中,基于AnacondaPython环境、虚拟环境,或手动下载的Python环境(也就是非conda环境),撰写并运行Python代码的方法。

  在之前的文章中,我们多次介绍过配置、使用AnacondaPython环境的方法。而在最近,需要在VS Code中使用Python——这台电脑中已经安装过AnacondaPython环境了,所以就想着直接用VS Code调用AnacondaPython;这里就介绍一下具体方法。此外,本文的方法也可用于我们直接从Python官网上下载的Python环境。

  首先,配置好VS Code,并在其“Extensions”一栏处搜索python,找到名称为Python的插件,如下图所示。

  随后,在弹出的界面中,点击“Install”选项,安装插件,如下图所示。

  随后,即可看到Python插件已经安装完成,进入欢迎界面,如下图所示。

  接下来,在VS Code右下角,找到如下图所示的Interpreter选择按钮,并选择电脑中此时的Python环境即可,如下图所示;其中,既可选择Anaconda的环境(包括虚拟环境),也可以选择我们直接从Python官网下载的Python环境(也就是非conda环境)。

  选取完成后,即可在VS Code右下角看到当前所选择的Python环境,并可开始撰写Python代码,如下图所示。

  撰写完成后,点击右上角的运行按钮,即可开始运行Python程序,如下图所示。

  此外,在VS Code的终端中,可以看到程序运行的输出,如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

### 如何在 VS Code 中为 Python 创建非全局 Conda 环境 要在 Visual Studio Code (VS Code) 中创建并使用非全局的 Conda 环境,可以按照以下方式操作: #### 1. 安装必要的扩展 确保安装了 Microsoft 提供的 **Python 扩展** 和 **Anaconda 扩展**。这些扩展可以帮助管理 Conda 环境以及调试 Python 脚本。 #### 2. 创建新的 Conda 环境 通过命令行工具(如 Anaconda Prompt 终端)运行以下命令来创建一个新的 Conda 环境: ```bash conda create --name myenv python=3.9 ``` 上述命令会创建名为 `myenv` 的新环境,并指定 Python 版本为 3.9[^1]。 激活该环境可以通过以下命令完成: ```bash conda activate myenv ``` #### 3. 在 VS Code 中配置环境 打开 VS Code 并按快捷键 `Ctrl+Shift+P` (Mac 上为 `Cmd+Shift+P`),输入并选择 **Python: Select Interpreter**。随后,在弹出的选择列表中找到刚创建的 Conda 环境路径,通常类似于: ``` /path/to/anaconda/envs/myenv/python.exe ``` 如果未自动检测到此环境,则可以选择手动输入路径[^2]。 #### 4. 设置工作区特定设置 为了使项目绑定至某个特定的 Conda 环境而不影响其他项目,可以在 `.vscode/settings.json` 文件中添加如下内容: ```json { "python.defaultInterpreterPath": "/path/to/anaconda/envs/myenv/bin/python", "python.terminal.activateEnvironment": true } ``` 这一步骤确保每次启动该项目时都会加载对应的 Conda 环境[^3]。 #### 5. 使用虚拟环境中安装依赖项 一旦选择了合适的解释器,就可以利用 pip conda 来安装所需的库包。例如: ```bash pip install numpy pandas scikit-learn ``` 者直接通过 Conda 进行安装: ```bash conda install numpy pandas scikit-learn ``` --- ### 示例代码片段 以下是基于 K-Means 聚类的一个简单实现示例,展示如何在一个独立的 Conda 环境中执行模型训练任务。 ```python from sklearn.cluster import KMeans import numpy as np k = 5 data = np.random.rand(100, 2) model = KMeans(n_clusters=k, n_init='auto', random_state=123).fit(data) centers = model.cluster_centers_ labels = model.labels_ print(f"Cluster Centers:\n{centers}") print(f"Labels Assigned:\n{labels}") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂学习GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值