研究背景与意义
研究背景与意义
随着城市化进程的加速,城市环境的复杂性与动态性日益增加,对智能化管理与监测提出了更高要求。城市环境中包含建筑物、车辆、行人及树木等多种目标,其空间分布与形态变化直接影响城市生态、交通管理及公共安全。传统目标检测方法在处理复杂场景时,常面临识别精度低、检测速度慢等问题,尤其在鱼眼相机捕捉的广角视图中,因图像畸变特性导致目标检测算法应用受限。
鱼眼相机凭借其广阔视野与高分辨率特性,成为城市监控与智能交通系统的重要工具,但其径向畸变特性使传统目标检测算法难以有效适配。为解决这一问题,基于改进YOLOv11的目标检测系统应运而生。YOLOv11作为实时目标检测领域的最新成果,通过引入空间金字塔分解卷积(SPDConv)模块,显著提升了对小目标及低分辨率图像的处理能力。SPDConv通过替代传统步长卷积与池化操作,在特征图下采样过程中保留全部信息,避免细粒度特征丢失,从而提升模型对复杂场景的适应性与检测精度。
本研究通过整合改进YOLOv11与SPDConv模块,构建面向鱼眼相机的城市环境目标检测系统,旨在提升城市环境中多目标检测的准确性与效率。该系统不仅为智能交通、城市安防等领域提供技术支持,还可推动目标检测技术在复杂场景下的应用创新,为构建智慧城市提供关键技术保障。
图片演示
源码文件
源码获取
可以直接加我下方的微信哦!