【完整源码+数据集+部署教程】植物叶片分类系统源码和数据集:改进yolo11-KernelWarehouse

研究背景与意义

研究背景与意义

随着全球气候变化和生态环境的不断恶化,植物的保护与管理变得愈发重要。植物叶片作为植物生长和光合作用的主要器官,其健康状况直接影响到植物的生长和产量。因此,开发高效的植物叶片分类系统,不仅能够帮助农民及时识别植物健康状况,还能为农业生产提供科学依据。近年来,深度学习技术在计算机视觉领域取得了显著进展,尤其是目标检测和图像分类任务中,基于卷积神经网络(CNN)的模型如YOLO(You Only Look Once)系列,因其高效性和准确性,逐渐成为植物叶片分类的研究热点。

本研究旨在基于改进的YOLOv11模型,构建一个高效的植物叶片分类系统。该系统将利用一个包含4900张图像的多类别数据集,涵盖了七种不同类型的植物叶片,包括Batavia_Green、Batavia_Red、Coral_Green、Coral_Red、Crystal_Green、Oak-Multi-leaf_Green和incised-leaf_Red。这些类别的选择不仅具有代表性,还反映了不同植物在生态系统中的多样性。通过对这些叶片图像的分析和分类,可以为植物病害的早期检测和防治提供重要支持。

此外,改进YOLOv11模型的引入,旨在提升分类的准确性和实时性。YOLO系列模型以其端到端的特性,能够在保持高精度的同时,实现快速的推理速度,适合在农业生产的实际应用中进行实时监测。通过本研究的实施,期望能够为植物保护、生态监测以及智能农业的发展提供新的思路和技术支持,从而推动可持续农业的进步。

图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集信息展示

本项目数据集信息介绍

本项目所使用的数据集专注于植物叶片的分类,旨在通过改进YOLOv11模型来提升植物叶片识别的准确性和效率。该数据集的主题为“tkdcnfmfsksnwk0823”,其设计初衷是为了解决植物叶片分类中存在的多样性和复杂性问题。数据集中包含七个不同的类别,分别为Batavia_Green、Batavia_Red、Coral_Green、Coral_Red、Crystal_Green、Oak-Multi-leaf_Green以及incised-leaf_Red。这些类别涵盖了多种植物叶片的颜色和形态特征,提供了丰富的样本,以便于模型在训练过程中能够学习到不同植物叶片的独特特征。

每个类别的样本均经过精心挑选和标注,确保数据的准确性和代表性。Batavia_Green和Batavia_Red分别代表了不同色彩的Batavia品种,展现了同一植物在不同生长条件下的色彩变化;而Coral_Green和Coral_Red则展示了Coral品种的多样性。Crystal_Green则以其独特的晶莹剔透的叶片特征吸引了研究者的注意。Oak-Multi-leaf_Green则包含了多片叶子的样本,适合用于分析植物的生长模式和生态适应性。最后,incised-leaf_Red类别则代表了叶片边缘有明显缺口的植物,提供了对植物形态多样性的进一步理解。

通过对这些类别的深入分析和研究,本项目希望能够构建一个高效的植物叶片分类系统,进而推动植物科学研究和农业生产的智能化发展。数据集的多样性和丰富性为模型的训练提供了坚实的基础,使得改进后的YOLOv11能够在实际应用中表现出更高的准确率和鲁棒性。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目核心源码讲解(再也不用担心看不懂代码逻辑)

以下是对代码的核心部分进行分析和详细注释的结果:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import pywt

创建小波滤波器

def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
# 使用pywt库创建小波对象
w = pywt.Wavelet(wave)

# 获取小波的分解滤波器
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)  # 高频滤波器
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)  # 低频滤波器

# 组合成分解滤波器
dec_filters = torch.stack([
    dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
    dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
    dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
    dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)
], dim=0)

# 重复滤波器以适应输入通道数
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)

# 获取小波的重构滤波器
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])

# 组合成重构滤波器
rec_filters = torch.stack([
    rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
    rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
    rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
    rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)
], dim=0)

# 重复滤波器以适应输出通道数
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)

return dec_filters, rec_filters
小波变换

def wavelet_transform(x, filters):
b, c, h, w = x.shape # 获取输入的形状
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) # 计算填充
# 进行卷积操作
x = F.conv2d(x, filters.to(x.dtype).to(x.device), stride=2, groups=c, padding=pad)
x = x.reshape(b, c, 4, h // 2, w // 2) # 重塑输出形状
return x

逆小波变换

def inverse_wavelet_transform(x, filters):
b, c, _, h_half, w_half = x.shape # 获取输入的形状
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) # 计算填充
x = x.reshape(b, c * 4, h_half, w_half) # 重塑输入形状
# 进行转置卷积操作
x = F.conv_transpose2d(x, filters.to(x.dtype).to(x.device), stride=2, groups=c, padding=pad)
return x

定义小波变换的函数

class WaveletTransform(Function):
@staticmethod
def forward(ctx, input, filters):
ctx.filters = filters # 保存滤波器
with torch.no_grad():
x = wavelet_transform(input, filters) # 执行小波变换
return x

@staticmethod
def backward(ctx, grad_output):
    grad = inverse_wavelet_transform(grad_output, ctx.filters)  # 计算梯度
    return grad, None

定义逆小波变换的函数

class InverseWaveletTransform(Function):
@staticmethod
def forward(ctx, input, filters):
ctx.filters = filters # 保存滤波器
with torch.no_grad():
x = inverse_wavelet_transform(input, filters) # 执行逆小波变换
return x

@staticmethod
def backward(ctx, grad_output):
    grad = wavelet_transform(grad_output, ctx.filters)  # 计算梯度
    return grad, None
定义小波卷积层

class WTConv2d(nn.Module):
def init(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type=‘db1’):
super(WTConv2d, self).init()

    assert in_channels == out_channels  # 输入通道数必须等于输出通道数

    self.in_channels = in_channels
    self.wt_levels = wt_levels
    self.stride = stride

    # 创建小波滤波器
    self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
    self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)  # 小波滤波器
    self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)  # 逆小波滤波器
    
    # 初始化小波变换和逆小波变换的函数
    self.wt_function = wavelet_transform_init(self.wt_filter)
    self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter)

    # 基础卷积层
    self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, groups=in_channels, bias=bias)
    self.base_scale = _ScaleModule([1, in_channels, 1, 1])  # 缩放模块

    # 小波卷积层
    self.wavelet_convs = nn.ModuleList(
        [nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)]
    )
    self.wavelet_scale = nn.ModuleList(
        [_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)]
    )

    # 如果步幅大于1,定义步幅卷积
    if self.stride > 1:
        self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
        self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter.to(x_in.dtype).to(x_in.device), bias=None, stride=self.stride, groups=in_channels)
    else:
        self.do_stride = None

def forward(self, x):
    # 前向传播过程
    x_ll_in_levels = []  # 存储低频分量
    x_h_in_levels = []   # 存储高频分量
    shapes_in_levels = [] # 存储形状信息

    curr_x_ll = x  # 当前低频分量

    # 小波变换过程
    for i in range(self.wt_levels):
        curr_shape = curr_x_ll.shape
        shapes_in_levels.append(curr_shape)  # 记录当前形状
        if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
            curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)  # 计算填充
            curr_x_ll = F.pad(curr_x_ll, curr_pads)  # 填充

        curr_x = self.wt_function(curr_x_ll)  # 小波变换
        curr_x_ll = curr_x[:, :, 0, :, :]  # 取低频分量
        
        shape_x = curr_x.shape
        curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])  # 重塑
        curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))  # 小波卷积和缩放
        curr_x_tag = curr_x_tag.reshape(shape_x)  # 重塑回原形状

        x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])  # 存储低频分量
        x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])  # 存储高频分量

    next_x_ll = 0  # 初始化下一个低频分量

    # 逆小波变换过程
    for i in range(self.wt_levels - 1, -1, -1):
        curr_x_ll = x_ll_in_levels.pop()  # 取出低频分量
        curr_x_h = x_h_in_levels.pop()  # 取出高频分量
        curr_shape = shapes_in_levels.pop()  # 取出形状信息

        curr_x_ll = curr_x_ll + next_x_ll  # 合并低频分量

        curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)  # 合并低频和高频分量
        next_x_ll = self.iwt_function(curr_x)  # 逆小波变换

        next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]  # 裁剪到原始形状

    x_tag = next_x_ll  # 最终输出的低频分量
    assert len(x_ll_in_levels) == 0  # 确保所有低频分量都已处理
    
    x = self.base_scale(self.base_conv(x))  # 基础卷积和缩放
    x = x + x_tag  # 合并结果
    
    if self.do_stride is not None:
        x = self.do_stride(x)  # 应用步幅卷积

    return x
定义缩放模块

class _ScaleModule(nn.Module):
def init(self, dims, init_scale=1.0, init_bias=0):
super(_ScaleModule, self).init()
self.dims = dims
self.weight = nn.Parameter(torch.ones(*dims) * init_scale) # 初始化权重
self.bias = None # 暂不使用偏置

def forward(self, x):
    return torch.mul(self.weight, x)  # 进行缩放操作

代码分析
小波滤波器创建:create_wavelet_filter 函数使用 PyWavelets 库创建小波滤波器,用于小波变换和逆变换。
小波变换和逆变换:wavelet_transform 和 inverse_wavelet_transform 函数实现了小波变换和逆变换的具体操作,利用卷积和转置卷积实现。
自定义的函数:WaveletTransform 和 InverseWaveletTransform 类实现了小波变换和逆变换的自动求导功能,允许在训练过程中使用。
小波卷积层:WTConv2d 类是一个自定义的卷积层,结合了小波变换和卷积操作,支持多层小波变换和逆变换。
缩放模块:_ScaleModule 类用于对输入进行缩放操作,便于调整输出的幅度。
整体而言,该代码实现了一个结合小波变换的卷积神经网络模块,适用于处理具有多层次特征的图像数据。

这个程序文件wtconv2d.py实现了一个基于小波变换的二维卷积层,主要用于图像处理和特征提取。文件中使用了PyTorch库,结合了小波变换的概念,以便在卷积操作中引入多尺度特征。

首先,文件导入了必要的库,包括PyTorch的核心模块和功能模块,以及用于小波变换的pywt库。接着,定义了一个函数create_wavelet_filter,该函数用于创建小波变换的滤波器。它接受小波类型、输入通道数和输出通道数作为参数,生成对应的小波滤波器和重构滤波器。这些滤波器通过小波的分解和重构系数生成,并进行了适当的维度调整。

接下来,定义了两个函数wavelet_transform和inverse_wavelet_transform,分别用于执行小波变换和逆小波变换。小波变换通过对输入张量进行卷积操作来实现,输出的张量被重塑为适合多尺度表示的形状。逆小波变换则是将多尺度的表示重新组合为原始的输入形状。

在小波变换和逆变换的过程中,使用了WaveletTransform和InverseWaveletTransform两个类,这两个类继承自torch.autograd.Function,分别实现了前向和反向传播的功能。它们在前向传播中调用之前定义的小波变换和逆变换函数,而在反向传播中则计算梯度。

随后,定义了WTConv2d类,这是整个文件的核心部分,继承自nn.Module。在构造函数中,初始化了输入和输出通道数、小波变换的层数、步幅等参数,并创建了小波滤波器和逆滤波器。该类还包含了基础卷积层和多个小波卷积层的定义。小波卷积层通过多个卷积操作提取多尺度特征,并在每个层次上应用缩放模块。

在forward方法中,首先进行小波变换,将输入信号分解为低频和高频部分。然后,经过多个小波卷积层处理后,再进行逆小波变换,将特征重构为输出信号。最后,如果设置了步幅,则通过额外的卷积操作调整输出的空间维度。

最后,定义了一个私有类_ScaleModule,用于对输入进行缩放操作。这个模块在卷积层中用于调整特征的尺度,以便更好地适应后续的处理。

总的来说,这个文件实现了一个结合小波变换的卷积层,能够在多尺度上提取特征,适用于图像处理和深度学习任务。通过小波变换,可以有效地捕捉图像中的细节和结构信息,从而提高模型的表现。

10.2 activation.py
import torch
import torch.nn as nn

class AGLU(nn.Module):
“”“统一激活函数模块,来源于 https://github.com/kostas1515/AGLU。”“”

def __init__(self, device=None, dtype=None) -> None:
    """初始化统一激活函数模块。"""
    super().__init__()
    # 使用Softplus作为激活函数的一部分,beta设置为-1.0
    self.act = nn.Softplus(beta=-1.0)
    # 初始化lambda参数,使用均匀分布
    self.lambd = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))  
    # 初始化kappa参数,使用均匀分布
    self.kappa = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))  

def forward(self, x: torch.Tensor) -> torch.Tensor:
    """计算统一激活函数的前向传播。"""
    # 将lambda参数限制在最小值0.0001,避免出现负值
    lam = torch.clamp(self.lambd, min=0.0001)
    # 计算激活函数的输出
    return torch.exp((1 / lam) * self.act((self.kappa * x) - torch.log(lam)))

代码核心部分说明:
AGLU类:这是一个自定义的激活函数模块,继承自nn.Module,用于实现一种新的激活函数。
初始化方法__init__:
使用Softplus作为激活函数的一部分,beta参数设置为-1.0。
lambd和kappa是两个可学习的参数,初始化时使用均匀分布,确保它们在训练过程中可以被优化。
前向传播方法forward:
接收输入张量x,并计算激活函数的输出。
使用torch.clamp将lambd限制在0.0001以上,以避免在后续计算中出现除以零的情况。
最后,返回计算结果,使用指数函数对激活值进行变换。
这个程序文件 activation.py 定义了一个名为 AGLU 的激活函数模块,主要用于深度学习模型中的激活函数计算。文件首先导入了 PyTorch 库及其神经网络模块。

在 AGLU 类的构造函数 init 中,首先调用了父类的构造函数 super().init(),以初始化基础的 nn.Module。接着,定义了一个激活函数 self.act,使用了 nn.Softplus,其参数 beta 被设置为 -1.0。Softplus 是一种平滑的激活函数,通常用于替代 ReLU 函数。接下来,定义了两个可学习的参数 self.lambd 和 self.kappa,它们都是通过均匀分布初始化的张量,并且可以在训练过程中更新。

在 forward 方法中,定义了前向传播的计算过程。该方法接收一个张量 x 作为输入。首先,通过 torch.clamp 函数将 self.lambd 限制在一个最小值 0.0001 以上,以避免在后续计算中出现数值不稳定的情况。然后,使用公式计算输出,其中包含了 Softplus 激活函数的输出、self.kappa 参数和 self.lambd 参数的运算。最终返回计算结果。

总的来说,这个模块实现了一种统一的激活函数,结合了可学习的参数,能够在训练过程中自适应调整,从而提高模型的表现。

源码文件

在这里插入图片描述

源码获取

可以直接加我下方的微信哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的佩奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值