研究背景与意义
研究背景与意义
随着智能家居和自动化技术的快速发展,室内场景理解已成为计算机视觉领域的重要研究方向。室内场景分割不仅对智能家居系统的环境感知至关重要,还在机器人导航、增强现实和虚拟现实等应用中扮演着关键角色。传统的室内场景分析方法往往依赖于手工特征提取,效率低下且适应性差,而深度学习技术的引入为这一领域带来了革命性的变化。
YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注。YOLOv11作为该系列的最新版本,结合了更深层次的网络结构和更先进的特征提取技术,能够在复杂的室内环境中实现高精度的物体检测与分割。然而,现有的YOLOv11模型在处理特定室内场景(如墙壁和地板)时,仍存在一定的局限性,尤其是在细粒度分割和背景处理方面。因此,改进YOLOv11以增强其在室内场景分割中的表现,具有重要的理论和实践意义。
本研究基于一个包含9200张图像的“墙壁与地板”数据集,数据集中标注了三类对象:背景、地板和墙壁。这些类别的细分为模型的训练提供了丰富的样本,使得模型能够更好地学习不同室内元素的特征。此外,数据集经过多种预处理和增强技术的处理,提升了模型的鲁棒性和泛化能力。通过对YOLOv11的改进,我们期望能够实现更高效的室内场景分割,推动智能家居和相关领域的进一步发展。
综上所述,基于改进YOLOv11的室内场景分割系统的研究,不仅能够提升室内环境理解的准确性,还将为智能家居、机器人导航等应用提供更为可靠的技术支持,为相关领域的研究与应用开辟新的方向。
图片演示
数据集信息展示
本项目数据集信息介绍
本项目旨在改进YOLOv11的室内场景分割系统,所使用的数据集专注于“墙面与地面”的主题,旨在为室内环境的理解和分析提供高质量的标注数据。该数据集包含三类主要对象,分别是背景、地面和墙面。这三类对象的选择不仅反映了室内场景的基本构成元素,也为深度学习模型的训练提供了丰富的上下文信息。
在数据集的构建过程中,我们收集了多样化的室内场景图像,确保涵盖不同的房间类型、布局和装饰风格。这些图像来源于真实的居住环境、办公空间以及公共场所,力求在视觉上呈现出丰富的多样性。每张图像都经过精确的标注,确保墙面和地面的边界清晰可辨,背景部分则被标记为无关区域,以便模型能够有效地区分主要对象与环境的其他部分。
数据集的类别数量为三,具体包括“背景”、“地面”和“墙面”。在训练过程中,模型将学习如何识别和分割这些类别,从而实现对室内场景的精确理解。背景类别的引入有助于模型在复杂环境中保持稳定性,避免误判,而地面和墙面的标注则为模型提供了明确的目标,使其能够在实际应用中更好地执行场景分割任务。
通过对该数据集的深入分析与训练,我们期望改进YOLOv11在室内场景分割中的表现,提升其在实际应用中的准确性和鲁棒性。最终目标是为智能家居、室内导航以及虚拟现实等领域提供更为精确的技术支持,推动相关技术的进一步发展与应用。
项目核心源码讲解(再也不用担心看不懂代码逻辑)
以下是对给定代码的核心部分进行提炼和详细注释的结果:
import torch
import torch.nn as nn
from typing import List
from torch import Tensor
class Partial_conv3(nn.Module):
“”“实现部分卷积的模块,用于在特定情况下进行卷积操作。”“”
def __init__(self, dim, n_div, forward):
super().__init__()
self.dim_conv3 = dim // n_div # 计算卷积通道数
self.dim_untouched = dim - self.dim_conv3 # 计算未卷积的通道数
self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) # 定义卷积层
# 根据前向传播方式选择不同的前向传播函数
if forward == 'slicing':
self.forward = self.forward_slicing
elif forward == 'split_cat':
self.forward = self.forward_split_cat
else:
raise NotImplementedError
def forward_slicing(self, x: Tensor) -> Tensor:
"""仅用于推理阶段的前向传播,保留原始输入以便后续残差连接。"""
x = x.clone() # 克隆输入以保持原始输入不变
x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) # 进行卷积操作
return x
def forward_split_cat(self, x: Tensor) -> Tensor:
"""用于训练和推理阶段的前向传播,将输入分为两部分进行处理。"""
x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) # 按通道分割输入
x1 = self.partial_conv3(x1) # 对第一部分进行卷积
x = torch.cat((x1, x2), 1) # 将两部分合并
return x
class MLPBlock(nn.Module):
“”“多层感知机块,包含卷积、归一化和激活函数。”“”
def __init__(self, dim, n_div, mlp_ratio, drop_path, layer_scale_init_value, act_layer, norm_layer, pconv_fw_type):
super().__init__()
self.dim = dim
self.mlp_ratio = mlp_ratio
self.drop_path = nn.Identity() if drop_path <= 0 else DropPath(drop_path) # 根据drop_path的值选择
self.n_div = n_div
mlp_hidden_dim = int(dim * mlp_ratio) # 计算隐藏层维度
# 定义MLP层
mlp_layer: List[nn.Module] = [
nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
norm_layer(mlp_hidden_dim),
act_layer(),
nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
]
self.mlp = nn.Sequential(*mlp_layer) # 将MLP层组合成一个序列
# 定义空间混合层
self.spatial_mixing = Partial_conv3(dim, n_div, pconv_fw_type)
# 如果需要,初始化层缩放参数
if layer_scale_init_value > 0:
self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.forward = self.forward_layer_scale # 使用带层缩放的前向传播
else:
self.forward = self.forward # 使用普通前向传播
def forward(self, x: Tensor) -> Tensor:
"""前向传播函数,执行空间混合和MLP操作。"""
shortcut = x # 保存输入以便后续残差连接
x = self.spatial_mixing(x) # 进行空间混合
x = shortcut + self.drop_path(self.mlp(x)) # 残差连接
return x
def forward_layer_scale(self, x: Tensor) -> Tensor:
"""带层缩放的前向传播函数。"""
shortcut = x
x = self.spatial_mixing(x)
x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x)) # 应用层缩放
return x
class FasterNet(nn.Module):
“”“FasterNet模型,包含多个阶段和块。”“”
def __init__(self, in_chans=3, num_classes=1000, embed_dim=96, depths=(1, 2, 8, 2), mlp_ratio=2., n_div=4,
patch_size=4, patch_stride=4, patch_size2=2, patch_stride2=2, patch_norm=True,
drop_path_rate=0.1, layer_scale_init_value=0, norm_layer='BN', act_layer='RELU', pconv_fw_type='split_cat'):
super().__init__()
# 选择归一化层和激活函数
norm_layer = nn.BatchNorm2d if norm_layer == 'BN' else NotImplementedError
act_layer = nn.GELU if act_layer == 'GELU' else partial(nn.ReLU, inplace=True)
self.num_stages = len(depths) # 阶段数量
self.embed_dim = embed_dim # 嵌入维度
self.patch_norm = patch_norm # 是否使用归一化
self.mlp_ratio = mlp_ratio # MLP比率
self.depths = depths # 每个阶段的深度
# 定义Patch嵌入层
self.patch_embed = PatchEmbed(patch_size=patch_size, patch_stride=patch_stride, in_chans=in_chans,
embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None)
# 计算随机深度衰减规则
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
# 构建各个阶段
stages_list = []
for i_stage in range(self.num_stages):
stage = BasicStage(dim=int(embed_dim * 2 ** i_stage), n_div=n_div, depth=depths[i_stage],
mlp_ratio=self.mlp_ratio, drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
layer_scale_init_value=layer_scale_init_value, norm_layer=norm_layer,
act_layer=act_layer, pconv_fw_type=pconv_fw_type)
stages_list.append(stage)
# 添加Patch合并层
if i_stage < self.num_stages - 1:
stages_list.append(PatchMerging(patch_size2=patch_size2, patch_stride2=patch_stride2,
dim=int(embed_dim * 2 ** i_stage), norm_layer=norm_layer))
self.stages = nn.Sequential(*stages_list) # 将所有阶段组合成一个序列
# 为每个输出添加归一化层
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
layer = norm_layer(int(embed_dim * 2 ** i_emb))
self.add_module(f'norm{i_layer}', layer)
def forward(self, x: Tensor) -> Tensor:
"""前向传播,输出四个阶段的特征。"""
x = self.patch_embed(x) # 进行Patch嵌入
outs = []
for idx, stage in enumerate(self.stages):
x = stage(x) # 通过每个阶段
if idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}') # 获取对应的归一化层
x_out = norm_layer(x) # 进行归一化
outs.append(x_out) # 保存输出
return outs # 返回所有阶段的输出
代码分析
Partial_conv3: 该类实现了部分卷积的功能,支持两种前向传播方式(切片和拼接)。这在模型中用于处理输入的不同部分,以实现更灵活的特征提取。
MLPBlock: 该类实现了一个多层感知机块,包含卷积、归一化和激活函数,并支持残差连接。它的设计允许在深度学习模型中进行复杂的特征转换。
FasterNet: 这是整个模型的核心类,负责构建网络的各个阶段。它通过定义嵌入层、多个基本阶段和合并层来实现特征提取和处理。
前向传播: forward方法负责将输入数据通过模型进行处理,并输出各个阶段的特征。这些特征可以用于后续的分类或其他任务。
总结
这段代码实现了一个复杂的深度学习模型,使用了模块化的设计,便于扩展和维护。每个模块都有明确的功能,能够在训练和推理过程中灵活地处理输入数据。
该程序文件 fasternet.py 实现了一个名为 FasterNet 的深度学习模型,主要用于图像处理任务。代码中使用了 PyTorch 框架,并结合了一些自定义的模块和层来构建模型。以下是对代码的逐部分分析和说明。
首先,文件中引入了一些必要的库,包括 PyTorch、YAML、以及一些深度学习所需的模块,如卷积层、归一化层等。文件开头的 all 列表定义了可供外部调用的模型函数。
接下来,定义了多个类。Partial_conv3 类实现了一种特殊的卷积层,可以选择不同的前向传播方式(如切片或拼接),以适应不同的训练和推理需求。MLPBlock 类实现了一个多层感知机模块,包含了空间混合和残差连接的功能。BasicStage 类则是由多个 MLPBlock 组成的基本阶段,用于构建网络的不同层次。
PatchEmbed 和 PatchMerging 类用于图像的嵌入和合并,分别将输入图像分割成小块并进行处理,以及在网络的不同阶段合并特征图。这些模块在图像处理任务中非常重要,因为它们能够有效地提取和融合特征。
FasterNet 类是整个模型的核心,构造函数中接收多个参数以配置模型的结构,包括输入通道数、类别数、嵌入维度、深度等。该类通过调用前面定义的模块,构建了一个多阶段的网络结构。模型的前向传播方法会依次通过各个阶段,并在指定的输出层进行归一化处理,最终返回多个阶段的特征图。
文件中还定义了一个 update_weight 函数,用于更新模型的权重。这个函数会检查新权重与模型权重的形状是否匹配,并将匹配的权重加载到模型中。
接下来,提供了多个函数(如 fasternet_t0, fasternet_t1, 等)用于创建不同配置的 FasterNet 模型。这些函数会读取配置文件(YAML 格式),并根据配置构建模型,同时可以选择加载预训练权重。
最后,在 main 块中,代码展示了如何使用 fasternet_t0 函数创建模型,并打印模型的通道信息和输入的特征图大小。这部分代码是用于测试和验证模型构建是否正确。
总体而言,该文件实现了一个灵活且高效的深度学习模型,适用于图像处理任务,且通过模块化设计使得模型的构建和配置变得更加方便。
10.2 attention.py
以下是经过简化和注释的核心代码部分,主要集中在 EMA, SimAM, SpatialGroupEnhance, TopkRouting, KVGather, QKVLinear, BiLevelRoutingAttention 这几个类。每个类的功能和实现细节都进行了详细的中文注释。
import torch
from torch import nn
import torch.nn.functional as F
class EMA(nn.Module):
“”"
EMA (Exponential Moving Average) 模块,用于增强特征表示。
“”"
def init(self, channels, factor=8):
super(EMA, self).init()
self.groups = factor # 将通道分为多个组
assert channels // self.groups > 0 # 确保每组至少有一个通道
self.softmax = nn.Softmax(-1) # Softmax 激活函数
self.agp = nn.AdaptiveAvgPool2d((1, 1)) # 自适应平均池化
self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # 自适应池化,按高度
self.pool_w = nn.AdaptiveAvgPool2d((1, None)) # 自适应池化,按宽度
self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups) # 组归一化
self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1) # 1x1 卷积
self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, padding=1) # 3x3 卷积
def forward(self, x):
b, c, h, w = x.size() # 获取输入的批量大小、通道数、高度和宽度
group_x = x.reshape(b * self.groups, -1, h, w) # 将输入重塑为分组形式
x_h = self.pool_h(group_x) # 对每组进行高度池化
x_w = self.pool_w(group_x).permute(0, 1, 3, 2) # 对每组进行宽度池化并转置
hw = self.conv1x1(torch.cat([x_h, x_w], dim=2)) # 连接高度和宽度的特征并通过 1x1 卷积
x_h, x_w = torch.split(hw, [h, w], dim=2) # 分割为高度和宽度的特征
x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid()) # 通过组归一化处理
x2 = self.conv3x3(group_x) # 通过 3x3 卷积处理
# 计算权重
x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x12 = x2.reshape(b * self.groups, c // self.groups, -1) # 重塑 x2
x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x22 = x1.reshape(b * self.groups, c // self.groups, -1) # 重塑 x1
weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w) # 计算最终权重
return (group_x * weights.sigmoid()).reshape(b, c, h, w) # 返回加权后的特征
class SimAM(nn.Module):
“”"
SimAM (Similarity Attention Module) 模块,用于自适应特征增强。
“”"
def init(self, e_lambda=1e-4):
super(SimAM, self).init()
self.activaton = nn.Sigmoid() # Sigmoid 激活函数
self.e_lambda = e_lambda # 正则化参数
def forward(self, x):
b, c, h, w = x.size() # 获取输入的批量大小、通道数、高度和宽度
n = w * h - 1 # 计算 n
# 计算均值和方差
x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)
y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5
return x * self.activaton(y) # 返回加权后的特征
class SpatialGroupEnhance(nn.Module):
“”"
Spatial Group Enhance 模块,用于增强空间特征。
“”"
def init(self, groups=8):
super().init()
self.groups = groups # 组数
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1)) # 权重参数
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1)) # 偏置参数
self.sig = nn.Sigmoid() # Sigmoid 激活函数
self.init_weights() # 初始化权重
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out') # Kaiming 正态初始化
if m.bias is not None:
nn.init.constant_(m.bias, 0) # 偏置初始化为 0
def forward(self, x):
b, c, h, w = x.shape # 获取输入的批量大小、通道数、高度和宽度
x = x.view(b * self.groups, -1, h, w) # 重塑输入
xn = x * self.avg_pool(x) # 计算增强特征
xn = xn.sum(dim=1, keepdim=True) # 求和
t = xn.view(b * self.groups, -1) # 重塑
t = t - t.mean(dim=1, keepdim=True) # 减去均值
std = t.std(dim=1, keepdim=True) + 1e-5 # 计算标准差
t = t / std # 归一化
t = t.view(b, self.groups, h, w) # 重塑
t = t * self.weight + self.bias # 加权和偏置
t = t.view(b * self.groups, 1, h, w) # 重塑
x = x * self.sig(t) # 应用 Sigmoid 激活
return x.view(b, c, h, w) # 返回增强后的特征
class TopkRouting(nn.Module):
“”"
Top-k 路由模块,用于选择最重要的特征。
“”"
def init(self, qk_dim, topk=4):
super().init()
self.topk = topk # 选择的 top-k 数量
self.qk_dim = qk_dim # 查询和键的维度
self.scale = qk_dim ** -0.5 # 缩放因子
self.routing_act = nn.Softmax(dim=-1) # Softmax 激活函数
def forward(self, query: Tensor, key: Tensor):
"""
前向传播函数
Args:
query: 查询特征
key: 键特征
Return:
r_weight: 路由权重
topk_index: top-k 索引
"""
query_hat, key_hat = query, key # 直接使用输入
attn_logit = (query_hat * self.scale) @ key_hat.transpose(-2, -1) # 计算注意力 logits
topk_attn_logit, topk_index = torch.topk(attn_logit, k=self.topk, dim=-1) # 选择 top-k
r_weight = self.routing_act(topk_attn_logit) # 计算路由权重
return r_weight, topk_index # 返回路由权重和索引
class KVGather(nn.Module):
“”"
KVGather 模块,用于根据路由索引收集键值对。
“”"
def init(self, mul_weight=‘none’):
super().init()
assert mul_weight in [‘none’, ‘soft’, ‘hard’] # 检查权重类型
self.mul_weight = mul_weight # 权重类型
def forward(self, r_idx: Tensor, r_weight: Tensor, kv: Tensor):
"""
前向传播函数
Args:
r_idx: 路由索引
r_weight: 路由权重
kv: 键值对
Return:
收集后的键值对
"""
n, p2, w2, c_kv = kv.size() # 获取 kv 的尺寸
topk = r_idx.size(-1) # top-k 数量
# 根据路由索引选择 kv
topk_kv = torch.gather(kv.view(n, 1, p2, w2, c_kv).expand(-1, p2, -1, -1, -1),
dim=2,
index=r_idx.view(n, p2, topk, 1, 1).expand(-1, -1, -1, w2, c_kv))
if self.mul_weight == 'soft':
topk_kv = r_weight.view(n, p2, topk, 1, 1) * topk_kv # 应用软权重
return topk_kv # 返回收集后的键值对
class QKVLinear(nn.Module):
“”"
QKVLinear 模块,用于将输入映射到查询、键和值。
“”"
def init(self, dim, qk_dim, bias=True):
super().init()
self.qkv = nn.Linear(dim, qk_dim + qk_dim + dim, bias=bias) # 线性映射
def forward(self, x):
q, kv = self.qkv(x).split([self.qk_dim, self.qk_dim + x.size(1)], dim=-1) # 分割为 q 和 kv
return q, kv # 返回查询和键值对
class BiLevelRoutingAttention(nn.Module):
“”"
Bi-Level Routing Attention 模块,用于多层次的注意力机制。
“”"
def init(self, dim, num_heads=8, n_win=7, qk_dim=None, topk=4):
super().init()
self.dim = dim # 输入维度
self.n_win = n_win # 窗口数量
self.num_heads = num_heads # 注意力头数量
self.qk_dim = qk_dim or dim # 查询和键的维度
self.scale = self.qk_dim ** -0.5 # 缩放因子
self.router = TopkRouting(qk_dim=self.qk_dim, topk=topk) # 路由模块
self.qkv = QKVLinear(self.dim, self.qk_dim) # QKV 映射
def forward(self, x):
"""
前向传播函数
Args:
x: 输入特征
Return:
输出特征
"""
q, kv = self.qkv(x) # 获取查询和键值对
# 进行路由操作
r_weight, r_idx = self.router(q, kv) # 计算路由权重和索引
# 进行键值收集
kv_gather = KVGather()
kv_selected = kv_gather(r_idx, r_weight, kv) # 收集键值对
return kv_selected # 返回收集后的特征
以上代码保留了主要的功能和结构,同时提供了详细的中文注释,便于理解每个模块的作用和实现细节。
这个程序文件 attention.py 实现了一系列与注意力机制相关的模块,主要用于深度学习中的视觉任务。以下是对代码的详细说明:
首先,文件导入了必要的库,包括 PyTorch 和一些其他模块。然后定义了一个包含多个注意力机制模块的列表,方便后续调用。
接下来,定义了多个类,每个类实现了一种特定的注意力机制或相关功能。
EMA (Exponential Moving Average):该类实现了一种基于通道的注意力机制,通过对输入特征图进行分组、池化和卷积操作,计算出每个通道的加权值,从而增强特征表示。
SimAM (Similarity Attention Module):这个模块通过计算输入特征的均值和方差,生成一个注意力权重,进而调整输入特征。
SpatialGroupEnhance:该模块实现了空间组增强,通过对输入特征进行分组和池化,生成空间注意力权重,从而增强特征的空间信息。
TopkRouting:实现了一种可微分的 Top-k 路由机制,选择最重要的特征进行后续处理。
KVGather:该模块根据路由索引和权重,从键值对中选择特征,支持不同的加权方式。
QKVLinear:实现了一个线性层,用于生成查询、键和值的特征。
BiLevelRoutingAttention:实现了一种双层路由注意力机制,结合了全局和局部注意力,通过窗口划分和特征聚合来提高模型的表现。
BiLevelRoutingAttention_nchw:类似于前一个类,但支持 NCHW 格式的输入,优化了数据处理流程。
h_sigmoid 和 h_swish:实现了高效的激活函数,用于提高模型的非线性表达能力。
CoordAtt:实现了坐标注意力机制,通过对输入特征进行池化和卷积操作,生成空间注意力权重。
BasicConv、ZPool、AttentionGate:这些类实现了基本的卷积操作、池化操作和注意力门控机制,用于特征增强。
TripletAttention:实现了三重注意力机制,通过对输入特征的不同维度进行注意力计算,增强特征表示。
ChannelAttention 和 SpatialAttention:分别实现了通道注意力和空间注意力机制,通过对输入特征进行加权,增强特征的表达能力。
BAMBlock:实现了通道和空间注意力的结合,增强了特征图的表示能力。
AttnMap 和 EfficientAttention:实现了高效的注意力机制,优化了计算过程,减少了内存占用。
LSKA、SegNext_Attention:实现了大可分离卷积注意力和 SegNext 注意力机制,适用于语义分割任务。
LayerNormProxy 和 LayerNorm:实现了层归一化操作,支持不同的数据格式。
Conv2d_BN:实现了带有批归一化的卷积层,便于特征的标准化处理。
CascadedGroupAttention 和 LocalWindowAttention:实现了级联组注意力和局部窗口注意力机制,适用于处理高维特征。
FocusedLinearAttention:实现了一种聚焦线性注意力机制,通过对输入特征进行加权,增强特征的表达能力。
MLCA、AFGCAttention:实现了多路径坐标注意力和自适应细粒度通道注意力,进一步增强了特征表示。
整个文件的设计旨在提供多种注意力机制的实现,便于在不同的视觉任务中进行特征增强和信息提取。这些模块可以灵活组合,以适应不同的网络架构和任务需求。
10.3 val.py
以下是经过简化并添加详细中文注释的核心代码部分:
import os
import torch
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.utils.plotting import output_to_target, plot_images
class DetectionValidator(BaseValidator):
“”"
继承自BaseValidator类的检测模型验证器。
“”"
def __init__(self, dataloader=None, save_dir=None, args=None):
"""初始化检测模型,设置必要的变量和参数。"""
super().__init__(dataloader, save_dir, args)
self.metrics = DetMetrics(save_dir=self.save_dir) # 初始化检测指标
self.iouv = torch.linspace(0.5, 0.95, 10) # 定义IOU阈值
def preprocess(self, batch):
"""对图像批次进行预处理。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True) # 将图像移动到设备上
batch["img"] = batch["img"].float() / 255 # 归一化图像
for k in ["batch_idx", "cls", "bboxes"]:
batch[k] = batch[k].to(self.device) # 将其他数据移动到设备上
return batch
def postprocess(self, preds):
"""对预测结果应用非极大值抑制(NMS)。"""
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
multi_label=True,
max_det=self.args.max_det,
)
def update_metrics(self, preds, batch):
"""更新检测指标。"""
for si, pred in enumerate(preds):
self.seen += 1 # 记录已处理的样本数量
pbatch = self._prepare_batch(si, batch) # 准备当前批次数据
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") # 获取类别和边界框
if len(pred) == 0: # 如果没有预测结果
continue
predn = self._prepare_pred(pred, pbatch) # 准备预测结果
stat = {"conf": predn[:, 4], "pred_cls": predn[:, 5]} # 记录置信度和预测类别
stat["tp"] = self._process_batch(predn, bbox, cls) # 计算真阳性
# 更新指标
for k in self.stats.keys():
self.stats[k].append(stat[k])
def get_stats(self):
"""返回指标统计信息和结果字典。"""
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # 转换为numpy数组
if len(stats) and stats["tp"].any():
self.metrics.process(**stats) # 处理指标
return self.metrics.results_dict # 返回结果字典
def plot_predictions(self, batch, preds, ni):
"""在输入图像上绘制预测的边界框并保存结果。"""
plot_images(
batch["img"],
*output_to_target(preds, max_det=self.args.max_det),
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
)
def _process_batch(self, detections, gt_bboxes, gt_cls):
"""
返回正确的预测矩阵。
参数:
detections (torch.Tensor): 预测结果张量。
gt_bboxes (torch.Tensor): 真实边界框张量。
gt_cls (torch.Tensor): 真实类别张量。
返回:
(torch.Tensor): 正确的预测矩阵。
"""
iou = box_iou(gt_bboxes, detections[:, :4]) # 计算IOU
return self.match_predictions(detections[:, 5], gt_cls, iou) # 匹配预测与真实标签
代码注释说明:
类的定义:DetectionValidator类用于处理YOLO模型的验证过程,继承自BaseValidator。
初始化方法:在初始化中设置了一些基本参数,包括检测指标和IOU阈值。
预处理方法:对输入的图像批次进行设备迁移和归一化处理。
后处理方法:使用非极大值抑制(NMS)来过滤预测结果。
更新指标方法:在每个批次中更新检测指标,包括计算真阳性。
获取统计信息方法:返回处理后的指标统计信息。
绘制预测结果方法:在输入图像上绘制预测的边界框并保存结果。
处理批次方法:计算预测与真实标签之间的匹配关系,返回正确的预测矩阵。
这个程序文件 val.py 是一个用于YOLO(You Only Look Once)目标检测模型验证的类,名为 DetectionValidator,它继承自 BaseValidator 类。该类主要用于处理验证数据集,计算各种性能指标,并可视化检测结果。
在初始化方法 init 中,程序设置了一些必要的变量和参数,包括是否使用COCO数据集、类别映射、任务类型、检测指标等。self.iouv 是一个张量,表示不同的IoU(Intersection over Union)阈值,用于计算mAP(mean Average Precision)。
preprocess 方法用于对输入的图像批次进行预处理,包括将图像转换为适当的张量格式,并进行归一化处理。同时,如果设置了保存混合标签的选项,该方法还会准备用于自动标注的标签。
init_metrics 方法用于初始化评估指标,包括获取验证数据集的路径、确定是否为COCO数据集、设置类别名称和数量等。
get_desc 方法返回一个格式化的字符串,用于总结YOLO模型的类别指标。
postprocess 方法应用非极大值抑制(NMS)来处理模型的预测输出,以减少重叠的边界框。
_prepare_batch 和 _prepare_pred 方法分别用于准备验证批次的真实标签和模型预测的边界框。
update_metrics 方法用于更新评估指标,计算真实标签与预测结果之间的匹配情况,并将结果保存到相应的统计数据中。
finalize_metrics 方法用于设置最终的指标速度和混淆矩阵。
get_stats 方法返回指标统计信息和结果字典,计算每个类别的目标数量。
print_results 方法打印训练或验证集的每个类别的指标,并在需要时绘制混淆矩阵。
_process_batch 方法返回正确的预测矩阵,通过计算IoU来评估预测的准确性。
build_dataset 和 get_dataloader 方法用于构建YOLO数据集和返回数据加载器,支持不同的批次大小和模式。
plot_val_samples 和 plot_predictions 方法用于可视化验证图像样本和模型预测的边界框,并将结果保存为图像文件。
save_one_txt 方法将YOLO检测结果保存为特定格式的文本文件,pred_to_json 方法将预测结果序列化为COCO格式的JSON文件。
eval_json 方法用于评估YOLO输出的JSON格式,并返回性能统计信息,特别是与COCO数据集相关的mAP计算。
整体来看,这个程序文件实现了YOLO模型在验证集上的评估流程,包括数据预处理、指标计算、结果可视化等功能,为目标检测模型的性能评估提供了全面的支持。
源码文件
源码获取
可以直接加我下方的微信哦!