【完整源码+数据集+部署教程】水下管道巡检泄露检测图像分割系统源码和数据集:改进yolo11-CARAFE

研究背景与意义

研究背景与意义

随着全球经济的快速发展,水下基础设施的建设与维护变得愈发重要。水下管道作为重要的能源和物资运输通道,其安全性直接关系到环境保护和经济稳定。然而,水下管道由于长期处于复杂的水下环境中,容易受到腐蚀、泄漏等问题的影响,导致环境污染和资源浪费。因此,开发高效的水下管道巡检技术,及时发现并处理潜在的泄漏问题,显得尤为重要。

传统的水下管道巡检方法多依赖人工检查或简单的监测设备,这不仅效率低下,而且容易漏检。近年来,计算机视觉技术的快速发展为水下管道的自动化巡检提供了新的解决方案。基于深度学习的图像分割技术,尤其是YOLO(You Only Look Once)系列模型,因其在实时目标检测和分割任务中的优越性能,成为研究的热点。YOLOv11作为该系列的最新版本,结合了更高的检测精度和更快的处理速度,适合在复杂的水下环境中进行实时监测。

本研究旨在基于改进的YOLOv11模型,构建一个高效的水下管道巡检泄漏检测图像分割系统。通过利用包含1000幅图像的水下管道数据集,该系统能够对水下管道的各类特征进行精准识别与分割,包括混凝土垫、混凝土重物、泄漏、管道及管道连接件等五个类别。通过对这些类别的细致分析与处理,系统不仅能够实现对泄漏问题的及时发现,还能为后续的维护决策提供科学依据。

综上所述,本研究不仅具有重要的理论意义,还将为水下管道的安全监测提供切实可行的技术支持,推动水下基础设施的智能化发展。

图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集信息展示

本项目数据集信息介绍

本项目所使用的数据集专注于水下管道的巡检与泄露检测,旨在为改进YOLOv11的图像分割系统提供强有力的支持。数据集包含五个主要类别,分别为“混凝土垫”、“混凝土重物”、“泄漏”、“管道”和“管道连接件”。这些类别的选择反映了水下管道环境中常见的元素,尤其是在进行管道巡检时,能够有效地帮助检测和识别潜在的泄漏问题。

在数据集的构建过程中,研究团队广泛收集了来自不同水域的图像,确保数据的多样性和代表性。这些图像涵盖了各种水下环境,包括清澈的湖泊、浑浊的河流以及海洋等,以模拟实际应用中可能遇到的不同情况。每个类别的图像均经过精心标注,确保在训练过程中能够提供准确的标签信息,从而提高模型的学习效果。

数据集不仅包含了静态图像,还包括了一些动态场景的捕捉,以便于模型在处理实际巡检任务时,能够适应不同的拍摄条件和环境变化。通过对“泄漏”这一类别的重点标注,数据集特别关注了水下管道可能出现的故障,力求为后续的算法优化提供丰富的训练样本。

总之,本项目的数据集为改进YOLOv11的水下管道巡检泄露检测图像分割系统奠定了坚实的基础,涵盖了多样的场景和类别,旨在提升模型的准确性和鲁棒性,以应对实际应用中的各种挑战。通过有效的训练和验证,期望能够在水下管道监测领域实现更高效的泄漏检测与管理。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目核心源码讲解(再也不用担心看不懂代码逻辑)

以下是保留的核心代码部分,并添加了详细的中文注释:

import torch
import torch.nn as nn

class KACNConvNDLayer(nn.Module):
def init(self, conv_class, norm_class, input_dim, output_dim, degree, kernel_size,
groups=1, padding=0, stride=1, dilation=1,
ndim: int = 2, dropout=0.0):
super(KACNConvNDLayer, self).init()

    # 初始化输入和输出维度、卷积参数等
    self.inputdim = input_dim
    self.outdim = output_dim
    self.degree = degree
    self.kernel_size = kernel_size
    self.padding = padding
    self.stride = stride
    self.dilation = dilation
    self.groups = groups
    self.ndim = ndim
    
    # 初始化dropout层
    self.dropout = None
    if dropout > 0:
        if ndim == 1:
            self.dropout = nn.Dropout1d(p=dropout)
        elif ndim == 2:
            self.dropout = nn.Dropout2d(p=dropout)
        elif ndim == 3:
            self.dropout = nn.Dropout3d(p=dropout)

    # 检查groups参数的有效性
    if groups <= 0:
        raise ValueError('groups must be a positive integer')
    if input_dim % groups != 0:
        raise ValueError('input_dim must be divisible by groups')
    if output_dim % groups != 0:
        raise ValueError('output_dim must be divisible by groups')

    # 初始化归一化层
    self.layer_norm = nn.ModuleList([norm_class(output_dim // groups) for _ in range(groups)])

    # 初始化多项式卷积层
    self.poly_conv = nn.ModuleList([conv_class((degree + 1) * input_dim // groups,
                                               output_dim // groups,
                                               kernel_size,
                                               stride,
                                               padding,
                                               dilation,
                                               groups=1,
                                               bias=False) for _ in range(groups)])
    
    # 注册缓冲区,用于多项式卷积的参数
    arange_buffer_size = (1, 1, -1,) + tuple(1 for _ in range(ndim))
    self.register_buffer("arange", torch.arange(0, degree + 1, 1).view(*arange_buffer_size))
    
    # 使用Kaiming均匀分布初始化卷积层的权重
    for conv_layer in self.poly_conv:
        nn.init.normal_(conv_layer.weight, mean=0.0, std=1 / (input_dim * (degree + 1) * kernel_size ** ndim))

def forward_kacn(self, x, group_index):
    # 前向传播过程,应用激活函数和线性变换
    x = torch.tanh(x)  # 应用tanh激活函数
    x = x.acos().unsqueeze(2)  # 计算反余弦并增加维度
    x = (x * self.arange).flatten(1, 2)  # 乘以arange并展平
    x = x.cos()  # 计算余弦
    x = self.poly_conv[group_index](x)  # 通过对应的卷积层
    x = self.layer_norm[group_index](x)  # 归一化
    if self.dropout is not None:
        x = self.dropout(x)  # 应用dropout
    return x

def forward(self, x):
    # 前向传播,处理输入数据
    split_x = torch.split(x, self.inputdim // self.groups, dim=1)  # 按组分割输入
    output = []
    for group_ind, _x in enumerate(split_x):
        y = self.forward_kacn(_x.clone(), group_ind)  # 对每个组调用forward_kacn
        output.append(y.clone())  # 保存输出
    y = torch.cat(output, dim=1)  # 合并所有组的输出
    return y

代码解释:
KACNConvNDLayer类:这是一个自定义的神经网络层,支持多维卷积操作。可以通过传入不同的卷积和归一化类来创建1D、2D或3D卷积层。
初始化方法:在初始化中设置输入和输出维度、卷积参数、dropout层等,并进行参数有效性检查。
forward_kacn方法:实现了前向传播的核心逻辑,包括激活函数、反余弦计算、卷积操作和归一化。
forward方法:处理输入数据,按组分割并调用forward_kacn进行处理,最后合并输出。
这个类的设计使得它可以灵活地处理不同维度的卷积操作,并且通过多项式卷积和归一化提高了模型的表达能力。

这个程序文件定义了一个名为 kacn_conv.py 的模块,主要实现了一个自定义的卷积层,称为 KACN(K-Order Activation Convolutional Network)卷积层。该模块使用 PyTorch 框架,包含了多个类来支持不同维度的卷积操作。

首先,KACNConvNDLayer 是一个基类,继承自 nn.Module,用于实现任意维度的卷积层。构造函数中接受多个参数,包括卷积类、归一化类、输入和输出维度、卷积核大小、组数、填充、步幅、扩张率、维度数和 dropout 比例。该类内部会进行一些参数的验证,例如组数必须为正整数,输入和输出维度必须能够被组数整除。

在构造函数中,初始化了层归一化和多项式卷积层。多项式卷积层的数量与组数相同,每个卷积层的输入通道数为 (degree + 1) * input_dim // groups,输出通道数为 output_dim // groups。此外,使用 Kaiming 正态分布初始化卷积层的权重,以便在训练开始时获得更好的表现。

forward_kacn 方法实现了前向传播的具体逻辑。它首先对输入进行激活,然后进行线性变换,并应用多项式卷积和层归一化。如果设置了 dropout,则在最后一步应用 dropout。

forward 方法负责处理输入数据。它将输入数据按组分割,然后对每个组调用 forward_kacn 方法进行处理,最后将所有组的输出拼接在一起。

接下来,KACNConv3DLayer、KACNConv2DLayer 和 KACNConv1DLayer 分别是针对三维、二维和一维卷积的具体实现类。这些类通过调用基类 KACNConvNDLayer 的构造函数,传入相应的卷积和归一化类(如 nn.Conv3d 和 nn.BatchNorm3d),从而实现特定维度的卷积操作。

总的来说,这个模块提供了一种灵活的方式来构建高阶激活卷积网络,支持多种维度的卷积操作,并结合了层归一化和 dropout 技术,以提高模型的性能和稳定性。

10.3 repvit.py
以下是代码中最核心的部分,并附上详细的中文注释:

import torch.nn as nn
import torch

class Conv2d_BN(torch.nn.Sequential):
“”"
定义一个包含卷积层和批归一化层的复合模块
“”"
def init(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1,
groups=1, bn_weight_init=1):
super().init()
# 添加卷积层
self.add_module(‘c’, torch.nn.Conv2d(
in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False))
# 添加批归一化层
self.add_module(‘bn’, torch.nn.BatchNorm2d(out_channels))
# 初始化批归一化层的权重
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)

@torch.no_grad()
def fuse_self(self):
    """
    将卷积层和批归一化层融合为一个卷积层
    """
    c, bn = self._modules.values()  # 获取卷积层和批归一化层
    # 计算新的卷积权重和偏置
    w = bn.weight / (bn.running_var + bn.eps)**0.5
    w = c.weight * w[:, None, None, None]
    b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps)**0.5
    # 创建新的卷积层
    m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(0), w.shape[2:], stride=self.c.stride,
                        padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups,
                        device=c.weight.device)
    m.weight.data.copy_(w)  # 复制权重
    m.bias.data.copy_(b)    # 复制偏置
    return m  # 返回融合后的卷积层

class RepViTBlock(nn.Module):
“”"
定义RepViT块,包含token混合和通道混合
“”"
def init(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
super(RepViTBlock, self).init()
assert stride in [1, 2]
self.identity = stride == 1 and inp == oup # 判断是否需要跳过连接
assert(hidden_dim == 2 * inp) # 隐藏层维度是输入维度的两倍

    if stride == 2:
        # 当stride为2时,使用token混合和通道混合
        self.token_mixer = nn.Sequential(
            Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp),
            nn.Identity() if not use_se else SqueezeExcite(inp, 0.25),
            Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
        )
        self.channel_mixer = Residual(nn.Sequential(
            Conv2d_BN(oup, 2 * oup, 1, 1, 0),
            nn.GELU() if use_hs else nn.GELU(),
            Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
        ))
    else:
        assert(self.identity)
        # 当stride为1时,使用不同的结构
        self.token_mixer = nn.Sequential(
            RepVGGDW(inp),
            nn.Identity() if not use_se else SqueezeExcite(inp, 0.25),
        )
        self.channel_mixer = Residual(nn.Sequential(
            Conv2d_BN(inp, hidden_dim, 1, 1, 0),
            nn.GELU() if use_hs else nn.GELU(),
            Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
        ))

def forward(self, x):
    """
    前向传播
    """
    return self.channel_mixer(self.token_mixer(x))

class RepViT(nn.Module):
“”"
定义RepViT模型
“”"
def init(self, cfgs):
super(RepViT, self).init()
self.cfgs = cfgs # 配置参数
input_channel = self.cfgs[0][2] # 获取输入通道数
# 构建第一个层
patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(),
Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1))
layers = [patch_embed] # 存储所有层
block = RepViTBlock # 使用RepViTBlock构建模型
for k, t, c, use_se, use_hs, s in self.cfgs:
output_channel = _make_divisible(c, 8) # 确保输出通道数可被8整除
exp_size = _make_divisible(input_channel * t, 8) # 计算扩展大小
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
input_channel = output_channel # 更新输入通道数
self.features = nn.ModuleList(layers) # 将所有层放入ModuleList中

def forward(self, x):
    """
    前向传播,返回特征图
    """
    features = [None, None, None, None]
    for f in self.features:
        x = f(x)  # 通过每一层
        # 记录特定尺度的特征图
        if x.size(2) in [x.size(2) // 4, x.size(2) // 8, x.size(2) // 16, x.size(2) // 32]:
            features[x.size(2) // 4] = x
    return features  # 返回特征图

def repvit_m0_9(weights=‘’):
“”"
构建RepViT模型的一个变体
“”"
cfgs = [
# k, t, c, SE, HS, s
[3, 2, 48, 1, 0, 1],
# … 省略其他配置
]
model = RepViT(cfgs) # 创建模型
if weights:
model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)[‘model’])) # 加载权重
return model
代码说明:
Conv2d_BN: 这个类定义了一个卷积层和批归一化层的组合,提供了一个融合方法,将这两个层合并为一个卷积层,以提高推理速度。
RepViTBlock: 这个类定义了RepViT的基本构建块,包含token混合和通道混合的逻辑。
RepViT: 这个类构建了整个RepViT模型,使用配置参数动态创建不同的层。
repvit_m0_9: 这是一个函数,用于创建RepViT模型的特定变体,并可选择加载预训练权重。
通过这些核心部分的组合,构建了一个高效的视觉变换器模型。

这个程序文件 repvit.py 实现了一个基于 RepVGG 结构的视觉变换器(RepViT)模型。该模型结合了卷积神经网络(CNN)和变换器(Transformer)的优点,旨在提高图像分类等任务的性能。以下是对代码的详细说明。

首先,文件导入了必要的库,包括 PyTorch 的神经网络模块、NumPy 以及 timm 库中的 SqueezeExcite 层。接着,定义了一个 all 列表,列出了可以从该模块导入的模型名称。

接下来,定义了一个 replace_batchnorm 函数,该函数用于替换模型中的 BatchNorm 层。具体来说,它会将 BatchNorm 层替换为身份映射(Identity),并在融合模型时调用该函数,以提高推理速度。

_make_divisible 函数用于确保所有层的通道数是 8 的倍数,这是为了兼容某些硬件加速器的要求。它根据输入值和最小值进行计算,并返回一个符合条件的新值。

Conv2d_BN 类是一个自定义的卷积层,包含卷积操作和 BatchNorm 层,并初始化 BatchNorm 的权重和偏置。它还提供了一个 fuse_self 方法,用于在推理时将卷积和 BatchNorm 融合为一个操作,以提高计算效率。

Residual 类实现了残差连接,允许在前向传播中添加输入和经过卷积层处理后的输出。它也支持在训练时随机丢弃部分输入,以增加模型的鲁棒性。

RepVGGDW 类实现了一个深度可分离卷积的变体,结合了卷积和 BatchNorm 层,并在前向传播中应用了残差连接。

RepViTBlock 类定义了一个 RepViT 的基本构建块,包括 token mixer 和 channel mixer。根据步幅的不同,它会选择不同的卷积结构,并可选地使用 SqueezeExcite 层来增强特征表达。

RepViT 类是整个模型的主体,负责构建模型的各个层。它根据配置参数(如卷积核大小、扩展比例、输出通道数等)构建多个 RepViTBlock,并在前向传播中返回特征图。

switch_to_deploy 方法用于将模型切换到推理模式,调用 replace_batchnorm 函数来优化模型。

update_weight 函数用于更新模型的权重,确保新权重与模型的权重形状匹配,并打印加载的权重数量。

接下来,定义了多个函数(如 repvit_m0_9、repvit_m1_0 等),这些函数根据不同的配置构建 RepViT 模型,并可选择加载预训练权重。

最后,在 main 块中,加载了一个特定的模型权重,并创建了一个随机输入张量,进行前向传播以获取模型的输出特征图,并打印每个特征图的尺寸。

整体而言,这个文件实现了一个灵活且高效的视觉变换器模型,适用于各种计算机视觉任务,尤其是在图像分类领域。

10.4 rmt.py
以下是经过简化和注释的核心代码部分:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DWConv2d(nn.Module):
“”" 深度可分离卷积类 “”"
def init(self, dim, kernel_size, stride, padding):
super().init()
# 使用深度可分离卷积,groups=dim表示每个输入通道都有自己的卷积核
self.conv = nn.Conv2d(dim, dim, kernel_size, stride, padding, groups=dim)

def forward(self, x: torch.Tensor):
    """ 前向传播
    x: 输入张量,形状为 (b, h, w, c)
    """
    x = x.permute(0, 3, 1, 2)  # 转换为 (b, c, h, w)
    x = self.conv(x)            # 进行卷积操作
    x = x.permute(0, 2, 3, 1)  # 转换回 (b, h, w, c)
    return x

class FeedForwardNetwork(nn.Module):
“”" 前馈神经网络类 “”"
def init(self, embed_dim, ffn_dim, activation_fn=F.gelu, dropout=0.0):
super().init()
self.fc1 = nn.Linear(embed_dim, ffn_dim) # 第一层线性变换
self.fc2 = nn.Linear(ffn_dim, embed_dim) # 第二层线性变换
self.dropout = nn.Dropout(dropout) # Dropout层
self.activation_fn = activation_fn # 激活函数

def forward(self, x: torch.Tensor):
    """ 前向传播
    x: 输入张量,形状为 (b, h, w, c)
    """
    x = self.fc1(x)                          # 线性变换
    x = self.activation_fn(x)                # 激活函数
    x = self.dropout(x)                      # Dropout
    x = self.fc2(x)                          # 再次线性变换
    return self.dropout(x)                   # 返回结果

class RetBlock(nn.Module):
“”" 保留块类,包含注意力机制和前馈网络 “”"
def init(self, embed_dim, num_heads, ffn_dim):
super().init()
self.attention = MaSA(embed_dim, num_heads) # 注意力机制
self.ffn = FeedForwardNetwork(embed_dim, ffn_dim) # 前馈网络
self.layer_norm1 = nn.LayerNorm(embed_dim) # 第一层归一化
self.layer_norm2 = nn.LayerNorm(embed_dim) # 第二层归一化

def forward(self, x: torch.Tensor):
    """ 前向传播
    x: 输入张量,形状为 (b, h, w, c)
    """
    # 注意力机制
    x = x + self.attention(self.layer_norm1(x))  # 残差连接
    x = x + self.ffn(self.layer_norm2(x))        # 残差连接
    return x

class VisRetNet(nn.Module):
“”" 视觉回归网络类 “”"
def init(self, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24]):
super().init()
self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0]) # 图像分块嵌入
self.layers = nn.ModuleList() # 存储各层

    # 构建每一层
    for i in range(len(depths)):
        layer = BasicLayer(embed_dim=embed_dims[i], depth=depths[i], num_heads=num_heads[i])
        self.layers.append(layer)

def forward(self, x):
    """ 前向传播
    x: 输入张量,形状为 (b, c, h, w)
    """
    x = self.patch_embed(x)  # 图像分块嵌入
    for layer in self.layers:
        x = layer(x)  # 逐层传递
    return x
创建模型实例

def RMT_T():
model = VisRetNet(
embed_dims=[64, 128, 256, 512],
depths=[2, 2, 8, 2],
num_heads=[4, 4, 8, 16]
)
return model

if name == ‘main’:
model = RMT_T() # 实例化模型
inputs = torch.randn((1, 3, 640, 640)) # 创建随机输入
res = model(inputs) # 前向传播
print(res.size()) # 输出结果的形状
代码注释说明:
DWConv2d: 实现了深度可分离卷积,适用于减少模型参数和计算量。
FeedForwardNetwork: 实现了一个简单的前馈神经网络,包含两个线性层和一个Dropout层。
RetBlock: 组合了注意力机制和前馈网络,使用残差连接和层归一化。
VisRetNet: 视觉回归网络的主要结构,包含图像分块嵌入和多个基本层。
RMT_T: 用于创建模型实例的函数,设置了嵌入维度、层数和头数。
该代码的核心部分集中在深度学习模型的构建和前向传播上,注释详细解释了每个类和方法的功能。

这个程序文件 rmt.py 实现了一个基于视觉变换器(Vision Transformer)的深度学习模型,名为 VisRetNet。该模型主要用于图像处理任务,具有多种配置(如 RMT_T、RMT_S、RMT_B 和 RMT_L),以适应不同的需求和计算资源。

首先,文件中导入了必要的库,包括 PyTorch 和一些用于构建神经网络的模块。接下来,定义了一些基本的组件,如 DWConv2d(深度可分离卷积)、RelPos2d(相对位置编码)、MaSAd 和 MaSA(多头自注意力机制的变体)、FeedForwardNetwork(前馈神经网络)、RetBlock(包含注意力和前馈网络的残差块)、PatchMerging(用于合并图像块的层)等。

DWConv2d 类实现了深度可分离卷积,它通过将输入的通道进行分组卷积来减少计算量。RelPos2d 类用于生成二维相对位置编码,这对于处理图像数据时捕捉空间关系非常重要。MaSAd 和 MaSA 类实现了多头自注意力机制,能够在输入特征之间建立联系。FeedForwardNetwork 类则实现了一个简单的前馈网络,通常用于对特征进行进一步处理。

RetBlock 类是模型的核心组件之一,它结合了自注意力机制和前馈网络,并通过残差连接来增强模型的学习能力。PatchMerging 类用于将输入特征图中的块合并,以降低特征图的分辨率。BasicLayer 类则定义了一个基本的变换器层,包含多个 RetBlock,并可选择性地进行下采样。

PatchEmbed 类负责将输入图像分割成小块并进行嵌入,最终形成输入特征。VisRetNet 类则是整个模型的封装,定义了模型的结构,包括多个层次和参数设置。它支持多种配置,以适应不同的输入大小和特征维度。

最后,文件中定义了四个函数(RMT_T、RMT_S、RMT_B 和 RMT_L),用于创建不同配置的 VisRetNet 模型。在主程序中,创建了一个 RMT_T 模型实例,并通过随机生成的输入数据进行了前向传播,输出了每个特征图的尺寸。

总体而言,这个程序文件展示了如何使用 PyTorch 构建一个复杂的视觉变换器模型,适用于图像分类等任务。

源码文件

在这里插入图片描述

源码获取

可以直接加我下方的微信哦!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的佩奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值