Java中如何使用雪花算法生成唯一ID

本文阐述了Twitter开源的雪花算法,用于生成具有唯一性和时间顺序的分布式ID,适用于互联网应用,附有代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雪花算法(Snowflake ID)是 Twitter 开源的一种分布式 ID 生成算法,其目的是生成全局唯一的 ID。该算法的核心思想是将一个 64 位的二进制数字分成几个部分,每个部分表示不同的信息,例如数据中心ID、机器ID、序列号等。这些部分的取值范围可以根据实际情况进行调整。

使用雪花算法生成的 ID 具有以下特点:

  1. 全局唯一,ID 不会重复。
  2. 按时间有序,新生成的 ID 比旧的 ID 大。
  3. 可以在分布式环境下生成,不需要中心节点协调。
  4. 高性能,生成 ID 的速度快。

因其具有全局唯一和分布式特性,常被用于互联网应用的分布式系统中,如订单号生成、数据库主键生成等。

具体实现代码如下:

public class Snowflake {

    /** 开始时间戳 (2021-01-01) */
    private final long START_TIMESTAMP = 1609430400000L;

    /** 机器ID所占的位数 */
    private final long WORKER_ID_BITS = 5L;

    /** 数据标识ID所占的位数 */
    private final long DATA_CENTER_ID_BITS = 5L;

    /** 支持的最大机器ID,结果是31 (0B11111) */
    private final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    /** 支持的最大数据标识ID,结果是31 (0B11111) */
    private final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);

    /** 序列在ID中占的位数 */
    private final long SEQUENCE_BITS = 12L;

    /** 机器ID向左移12位 */
    private final long WORKER_ID_SHIFT = SEQUENCE_BITS;

    /** 数据标识ID向左移17位(12+5) */
    private final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;

    /** 时间戳向左移22位(5+5+12) */
    private final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;

    /** 支持的最大序列号,结果是4095 (0B111111111111) */
    private final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);

    /** 工作机器ID */
    private final long workerId;

    /** 数据中心ID */
    private final long dataCenterId;

    /** 毫秒内序列号 */
    private long sequence = 0L;

    /** 上次生成ID的时间戳 */
    private long lastTimestamp = -1L;

    /**
     * 构造函数
     * @param workerId 工作机器ID
     * @param dataCenterId 数据中心ID
     */
    public Snowflake(long workerId, long dataCenterId) {
        if (workerId > MAX_WORKER_ID || workerId < 0) {
            throw new IllegalArgumentException(String.format("WorkerID不能超过%d且不能小于0", MAX_WORKER_ID));
        }
        if (dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) {
            throw new IllegalArgumentException(String.format("DataCenterID不能超过%d且不能小于0", MAX_DATA_CENTER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }

    /**
     * 生成ID
     * @return long类型的ID
     */
    public synchronized long nextId() {
        long timestamp = System.currentTimeMillis();

        // 如果当前时间小于上次生成ID的时间戳,说明系统时钟回退过,抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("系统时钟回退,拒绝生成ID,上次生成ID的时间戳:%d,当前时间戳:%d",
                    lastTimestamp, timestamp));
        }

        // 如果当前时间等于上次生成ID的时间戳(同一毫秒内),则序列号加1
        if (timestamp == lastTimestamp) {
            sequence = (sequence + 1) & MAX_SEQUENCE;
            if (sequence == 0) {
                // 如果序列号已经超过最大值,需要等待到下一毫秒再继续生成ID
                timestamp = waitNextMillis(timestamp);
            }
        } else {
            sequence = 0L;
        }

        // 更新上次生成ID的时间戳
        lastTimestamp = timestamp;

        // 生成ID
        return ((timestamp - START_TIMESTAMP) << TIMESTAMP_LEFT_SHIFT) |
                (dataCenterId << DATA_CENTER_ID_SHIFT) |
                (workerId << WORKER_ID_SHIFT) |
                sequence;
    }

    /**
     * 等待下一毫秒
     * @param timestamp 上次生成ID的时间戳
     * @return 下一毫秒的时间戳
     */
    private long waitNextMillis(long timestamp) {
        long nextTimestamp = System.currentTimeMillis();
        while (nextTimestamp <= timestamp) {
            nextTimestamp = System.currentTimeMillis();
        }
        return nextTimestamp;
    }

    // 示例
    public static void main(String[] args) {
        Snowflake snowflake = new Snowflake(1, 1);
        System.out.println(snowflake.nextId());
    }
}

在上述代码中,可以通过调整START_TIMESTAMP、WORKER_ID_BITS、DATA_CENTER_ID_BITS、SEQUENCE_BITS等参数来满足不同的需求,例如支持更多的机器、更高的QPS等。

这是批量生成的ID:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值