Ambari HDP 下 SPARK2 与 Phoenix 整合

本文详细介绍了在CentOS 7.4环境下,如何通过Ambari配置Spark2与Phoenix的整合,包括必要的环境说明、配置步骤及解决YarnHA问题的方法。适合已完成HBase安装并启用Phoenix的用户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、环境说明

操作系统CentOS Linux release 7.4.1708 (Core)
Ambari
2.6.x
HDP
2.6.3.0
Spark
2.x
Phoenix
4.10.0-HBase-1.2

2、条件

  1. HBase 安装完成
  2. Phoenix 已经启用,Ambari界面如下所示:

  1. Spark 2安装完成

3、Spark2 与 Phoenix整合

Phoenix 官网整合教程: http://phoenix.apache.org/phoenix_spark.html

步骤:

  1. 进入 Ambari Spark2 配置界面

  1. 找到自定义 spark2-defaults并添加如下配置项:
   spark.driver.extraClassPath=/usr/hdp/current/phoenix-client/phoenix-4.10.0-HBase-1.2-client.jar
   spark.executor.extraClassPath=/usr/hdp/current/phoenix-client/phoenix-4.10.0-HBase-1.2-client.jar

mark

4、Yarn HA 问题

如果配置了Yarn HA, 则需要修改 Yarn HA 配置,否则spark-submit提交任务会报如下错误:

Exception in thread "main" java.lang.IllegalAccessError: tried to access method org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider.getProxyInternal()Ljava/lang/Object; from class org.apache.hadoop.yarn.client.RequestHedgingRMFailoverProxyProvider
        at org.apache.hadoop.yarn.client.RequestHedgingRMFailoverProxyProvider.init(RequestHedgingRMFailoverProxyProvider.java:75)
        at org.apache.hadoop.yarn.client.RMProxy.createRMFailoverProxyProvider(RMProxy.java:163)
        at org.apache.hadoop.yarn.client.RMProxy.createRMProxy(RMProxy.java:94)
        at org.apache.hadoop.yarn.client.ClientRMProxy.createRMProxy(ClientRMProxy.java:72)
        at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceStart(YarnClientImpl.java:187)
        at org.apache.hadoop.service.AbstractService.start(AbstractService.java:193)
        at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:153)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
        at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:922)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:914)
        at scala.Option.getOrElse(Option.scala:121)
        at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:914)
        at cn.spark.sxt.SparkOnPhoenix$.main(SparkOnPhoenix.scala:13)
        at cn.spark.sxt.SparkOnPhoenix.main(SparkOnPhoenix.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.i

修改Yarn HA配置:

原来的配置:

yarn.client.failover-proxy-provider=org.apache.hadoop.yarn.client.RequestHedgingRMFailoverProxyProvider

改为现在的配置

yarn.client.failover-proxy-provider=org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider

如果没有配置 Yarn HA, 则不需要进行此步配置

---

欢迎关注微信公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据AI

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值