在机器学习的世界里,随机森林算法以其出色的分类和回归能力而闻名。我们将深入sklearn库中的随机森林,探索如何通过实战提升模型的分类准确率。
一 随机森林算法简介
随机森林是一种集成学习方法,通过构建多个决策树并综合它们的预测结果来提高预测准确性。每个决策树都是在训练数据的一个随机子集上构建的,这种方法减少了模型间的相关性,从而增强了整体模型的泛化能力。
理论详情,请查看往期文章:揭秘Bagging与随机森林:构建更强大预测模型的秘密
二 sklean实战
在 SKLearn 中,随机森林算法被封装在RandomForestClassifier
和RandomForestRegressor
两个类中,分别用于分类和回归问题。这两个类提供了丰富的参数和方法,使得我们可以轻松地构建和调优随机森林模型。
1. 导入库和数据
首先,我们需要导入必要的库,并加载数据集。
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
# 加载数据
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
2. 创建随机森林分类器
创建一个随机森林分类器实例,并设定随机种子以保证结果的可重复性。
<