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1 INTRODUCTION

Let M be a recursive regression model, that is, a set of
regression equations for ordered variables Yi,...,Y,,
where each variable Y; is regressed on Y7,...,Y; 1 and
where a set Cy of coefficients are set to zero in advance,
while others remain “free”. We wish to test if this
model fits a given set of data, namely, if the data sup-
port the starting assumption of setting the coeflicients
in Cy to zero.

We can, of course, test the entire model as a unit and
obtain an overall measure of fit between the model and
the data [Chou and Bentler, 1995]. Such a global mea-
sure of fit, however, would be of little help in model
construction, for it does not provide the investigator
with information as to parameter is responsible for
a bad fit (if any) and which substantive assumption
requires reconsideration [Pearl, 1998]. An alternative
would be to actually perform the regressions, using
least-square methods, and test if each member of Cy is
indeed zero. This test provides the desired information
on individual members of Cy, but may require high or-
der regressions, hence loss of power, especially for large
values of i. The question arises whether we can run a
different set of regressions, each with a smaller number
of variables, and still test the original model M.

We show that the answer to this question is affirma-
tive, and that the following procedure accomplishes
the task:

Graphical Procedure (GP)

1. Construct the directed acyclic graph of M, in
which nodes represent variables and arrows rep-
resent non-zero coefficients,

2. for each pair (i, j) of non adjacent variables, i > j,
find a set Z;; of nodes such that:
2.1 Z;; d-separates ¢ from j in the graph, and
2.2 Z;; contains only nodes that are closer to ¢
than j is to i,

3. test the hypothesis r;;.z,, = 0 for each i > j,
where r;;.z,, is the coefficient of Yj in the regres-
sion of Y; on {Y; U Z;;}.

We show in this paper that if the regression coefficients
ri;.2;;, chosen according to the procedure above, van-
ish, then all members of Cy and only those members,
must vanish as well.

A special, well known choice for Z;; is the set of par-
ent nodes of 4, namely, Z;; = pa;, which yields the
standard test used in validating Bayesian networks.
However, when the size of pa; is large, it might be ad-
vantageous to use non-parental separators, as shown
below.

2 AN EXAMPLE

Consider the set M of regression equations

Xo = anXite

X3 = a3X1+0Xs+e3 (1)
X4 = 0X1 +0X2 +a43X3 + €4

X5 = 0X1 40X+ as3X3+as54Xs + €5

The assumptions embedded in this regression model
are represented by the zero coefficients, and corre-
spond to the vanishing of the following set of partial
correlations:

Co = {p321 =0, pa1.23 = 0, pa2.13 = 0, ps1.234 = 0, p52.134 = 0}

()
The graph representing M is shown in Figure 1, from
which the separating sets for each nonadjacent pair
of nodes can easily be identified. One choice of sep-
arators leads to the following set of partial regression
coeflicients that need be tested:

B = {p32.1 =0,p41.3 =0,p40.1 = 0,p51.3 = 0, ps2.1 = 0}
3)

We see that B and Cy contain the same number of

elements, yet all elements of B have at most three
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indices and will require, therefore, only two regressors
in their corresponding tests. (The parental scheme
would require three regressors for testing ps2.34 = 0.)

The paper proves that, in general, the elements of Cy
are zero if and only if the elements of B are zero, where
B is any set that meets conditions 2.1 and 2.2. We
further extend this result to nonrecursive regression
and outline economical ways of testing both directed
and undirected graph models with Gaussian variables.

3 THEORETICAL BACKGROUND

Definition 1 (basis) Let S be a set of zero partial cor-
relations. A basis B for S is a set of zero partial corre-
lations that (1) implies (using the lows of probability)
every element of S, and (2) no proper subset of B sus-
tains such implication.

The target of our investigation is a set S which corre-
sponds to Cy, the zero elements in a recursive system
of regression equations. Such a set is characterized by
a distinct feature: the indices in every element of the
i-th row are precisely the set of predecessors of i. It
is well known, that such sets of zero partial correla-
tions can be represented by separation in a directed
acyclic graph D(M), such as the one constructed by
procedure G'P in Section 1. This follows from the fact
that in any DAG D, the parents of node ¢ separate 4
from all its nondescendants in D [Pearl, 1988, pp. 119—
120]. Moreover, the DAG D(M) also enables us to
identify a basis for Cy, choosing the set of parents of
node ¢ as the conditioning variables Z in each mem-
ber r;5.z of B. This follows from the d-separation’
theorem [Verma and Pearl, 1988], which states that
every separation conditions in G(M) corresponds to
conditional independence relationship in the model M
from which G was constructed. When dealing with re-
gression models, conditional independence translates
to zero partial correlation and, therefore, every partial

!The d in d-separation connotes “directional.” In this
paper, however, we will use the term “separation” to mean
d-separation.

correlations that corresponds to pair-wise separations
in D(M) is guaranteed to vanish in M. We denote the
set of all these vanishing partial correlations by R(D),
and we say that each member of R(D) is entailed by
D.

Thus, an obvious choice of a basis for Cy, as well as for
R(D), is the set of equalities Bpa = {pij.pa; = 0]i > j},
where ¢ ranges over all nodes in D, j ranges over all
predecessors of 4 in any order that agrees with the ar-
rows of D, and pa; stands for the set of parents of
node i in D. For example, the parent basis for the
model in Fig. 1 would consist of the elements: By, =
{p321 = 0,pa1.3 = 0,p42.3 = 0, p51.43 = 0, ps52.43 = 0}
Testing for these equalities is sufficient therefore for
testing the vanishing of all elements of Cy. However,
when the parent sets pa; are large, it may be possi-
ble to select a more economical basis (see Eq. (3)), as
stated in the next theorem.

Theorem 1 Let (i,j) be a pair of nonadjacent nodes
in a DAG D, and Z;; any set of nodes such that:

(i) Zi; d-separates i from j in the graph, and

(19) Zi; contains only nodes that are closer to i than
J is to 1.

The set of zero partial correlations

BSEP = {p'ij'Zij = O|i > .7};

consisting of one element per nonadjacent pair, consti-
tutes a basis for the set R(D) of all vanishing partial
correlations entailed by D.

That no proper subset of By, implies the vanishing
of Cy follows from the observation that for every DAG
D there exists a covariance matrix whose vanishing
partial correlations coincide precisely with the sepa-
ration conditions in D. Had any proper subset B’ of
B;,p been a basis for Cy, the missing inequalities would
have to be implied by B’, and this would mean that
the diagram created by adding arrows to D for each
element of Byp\B would be inconsistent, contrary to
the theorem of [Geiger and Pearl, 1990].

An economical basis satisfying the condition of Theo-
rem 1 can easily be found using graphical techniques.
For example, if Z;; is any subset of pa; that sepa-
rates ¢ from j, it must satisfy condition (#) and con-
stitutes, therefore, a legitimate basis for M. If we fur-
ther wish to find a basis that minimizes the number of
regressors, or some other cost function, the separator-
minimization methods of [Acid and de Campos, 1996)
and [Tian et al., 1998] can be used, since the restric-
tions imposed by condition (7)) merely exclude a set of
nodes from entering the separator Z;;.



Section 4 establishes several lemmas which provide
weak versions of Theorem 1 and lead the way toward
the proof. These lemmas are based on two properties
of partial correlations, called weak union and contrac-
tion in [Pearl, 1988].

weak union:
pijz=0& pirz=0 = pijrz =0 (4)

contraction:
pijkz = 0& pir.z =0 = pijz=0 (5)

To facilitate the derivation, we introduce additional
notation. For any three sets of variables, Si,Ss and
S3, we shall write (S1, 52, S3)p if, in diagram D, the
nodes associated with S; are separated from those as-
sociated with S3, by the nodes associated with set Ss.
Correspondingly, we write (S1,S2,S3)p if, in a prob-
ability function P, the set of variables S; is condi-
tionally independent of the set Ss3, given the variables
in set Sa. Thus, the d-separation theorem mentioned
above can be stated succinctly as:

(S1,52,83)p = (51,52, S3)p (6)
whenever (Y;,pa;,{Y1,...,Yi_1}\pa;)p holds for i =
2,3,...,n. Whenever this implication holds, we will

say that D is an I-map of P (see [Pearl, 1988, p. 96]).

In this paper, our concern lies not with general condi-
tional independencies but rather with vanishing par-
tial correlations. To this end, we will continue to use
the notation (S, S2,S3)p to denote zero partial cor-
relation p;;.5, = 0, where ¢ is any element of S; and
j is any element of S3. However, in addition to the
properties of weak union and contraction, written

weak union;
(51,85, 5) p&(S1, S2, S1)p = (S1, 254, 52 (7)

contraction:
51,525'4,53)13&(51,52,54)13 = (51,5'2,53)13 (8)

we now use a third property, called composition:
(S1,82,83) p&(S1,S2,S4)p & (S1,S2,S354)p

which holds for partial correlations. We will permit the
sets S1.93 to intersect with Sy, with the understanding
that (Sl, 52, S4)P stands for (51\52, Sz, 53\52)]3

4 PROOF OF THEOREM 1

Lemma 1
The set of independencies Bpq = {(i,pai, j)pli > j}
is a basis for R(D).

Proof: As mentioned in Section 2, Lemma 1 is a spe-
cial case of the d-separation theorem, in the context of
compositional independencies, that is, independence of
individual elements in a set implies the independence
of the entire set.

Lemma 2 The set By = {(i,Zij,j)pli > j} is a
basis of R(D) if Z;; is any subset of pa; that separates
i from j in D.

Proof:

This proof will consist of two parts. In part 1 we will
show that any set Z;; that separates ¢ from j also
separates pa; from j, that is,

(i, Zij,3) 0 = (pai, Zij, j) o 9)

Indeed, if the r.h.s of Eq. (9) is false, then for some
node t in pa;\Z;; there must be a path ¢...... ]
that is not blocked by Z;;. This implies that the
path i « ¢t...... J is, likewise, not blocked by Z;;,
which contradicts the assumption (i, Z;;,j)p- Thus,
(t,Z;j,7)p holds for every t € pa;\Z;;, which estab—
lishes the first part of the proof.

For the second part, we proceed by induction. We
assume that Lemma 2 is true for the predecessors of
i, ' = 1,2,...,7 — 1 in some ordering of the nodes
that agrees with the arrows in D. This means that,
D;_1, the subgraph induced by the nondescendants of
i, is an I-map of P — all separations in D;_; stand for
valid independencies in P. We then set to prove that
Lemma 2 holds in D;, the graph induced by i together
with its predecessors.

Noting that the separation condition on the r.h.s of
Eq. (9), (pai, Zij,j)p, involves only nondescendants
of i, we have (pa;, Zi;,j)p, since D; 1 is an I-map
of P. We also have (i, Z;;, j)p by the assumption of
Lemma 2. Thus, by composition and weak union,

(pai, ZzJaJ)P & (i, 1JJJ)P = (i, pazZzJaJ) (10)

Clearly, for Z;; C pa;, Eq. (10) implies (4, pa;, j) p, and
establishes Lemma, 2, because the set of independen-
cies

{(iapaiaj)P | .7 < i; (ZJJ) nonadjacent} (11)

coincides with the basis B, of Lemma 1.

Proof of Theorem 1: Let d(i, j) denote the shortest
distance between nodes j and 4, and d(Z;;) the highest
d(i, k) of any member k of set Z;;. We will prove
Theorem 1 by double induction; first on ¢ and, second,
for any fixed 4, on d(i, j)-

For a fixed i, Eq. (10) holds for all j < 4 whenever
a separating set Z;; is found that satisfies (i, Z;;,j) p
We need to show that the set of independencies

{(i,paiZsj, j)p | j <1, (i, Zij,5)p} (12)

implies Eq. (11), whenever Z;; satisfies d(Z;;) < d(i, j)

of all i > j.
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The theorem is certainly true for d(i,j) = 2, namely
for any node j that is adjacent to pa;. For any such
node, the separating set Z;; that enters Eq. (12) must
be a subset of pa;, hence, we immediately obtain (from
(10)):

(iapaiz’ijaj)P = (i7pai7j)P (13)

Now assume the relation (i,pa;,j)p holds for any j
such that d(7, j) < d, and consider an arbitrary node j
such that d(i,j) = d > 2. Based on condition (i%)
of the theorem, every member k of Z;; must have
d(i,k) < d and, therefore, the induction hypothesis
entails

(i,pai, k)p = (i,pa;, k)p (14)

and since every k in Z;; satisfies the Lh.s. of (14), we
have

(i, pai, Zij) p (15)

Putting (12) and (15) together, and using contraction,
we get

(i,pa;Zsj, j)p and (i,pas, Zij)p = (i,pa;, j)p

which proves the theorem.

5 REMARKS TOWARD
EXTENDING THEOREM 1

Theorem 1 is sufficient for showing that Eq. (3) forms
a basis for the model of Fig. 1. For example, ps1.3 is
justified because {X3} C pas. The term ps2.1, though
it does not satisfy the conditions of Lemma 2, meets
those of Theorem 1 and qualifies Eq. (3) as a basis.

To see why Theorem 1 may be extendable, consider the
model in Fig. 2, the basis of which is {(ps; = 0,j =
1,2,3)}. The set {p41.23 = 0,/)42.13 = 0,p43.12 = 0}
forms a basis for R(D), though it does not meet con-
dition (i4) of the theorem. This follows by applying
the axiom of intersection to the given three indepen-
dencies:

(4,23,1),(4,13,2)
(47 35 12)7 (4’ 127 3)

(4,3,12)

=
= (4,0,123).

which yields the correct basis (4,0,123)p.

This example points to another method of testing
bases. The statistics of regression models is completely
specified by the covariance matrix cov(i, j), which has
n(n—1)/2 off-diagonal terms. Every nonadjacent pair
(4,7) in the diagram is separated by some set Z;; and
imposes a constraint p;;.z,, = 0 on the covariance ma-
trix. If these constraints lead to a unique solution
Pij-pa; = 0 for every pair ¢ > j, then the sets Z;; con-
stitute a basis. Else, if the constraints are not sufficient
for imposing a unique solution (= 0) on each pjj.pa;,
then Z;; does not represents a basis. This algebraic
approach to extending Theorem 1 could be used as a
last resort, after exhausting the axiomatic approach.

To show that condition (4¢) of Theorem 1 cannot be re-
laxed to allow just any separating set Z;;, consider the
model in Fig. 2, and assume we are given the following
three independencies:

(45 127 3)’ (47 3’ 2)7 (41 05 ]‘)

each is represented by a genuine separation in the
graph. To show that this set is not a basis for Fig. 2,
we note that none of the graphoid axioms is applicable
to these triples, and therefore we can’t prove (4,0, 23).

This is still not a proof, because the graphoid axioms
are not complete relative to correlational independen-
cies; a direct proof is feasible in this case. Using the
recursion relation for partial correlations, we can ob-
tain a non-zero solution for pss and p43 and still satisfy
the three triplets. These three triplets impose the fol-
lowing constraints on p;o, p13 and pza:

P33 + piy — pazprap1z = L.

and
P42
— = P32
P43

One can easily satisfy these constraints and obtain a
nonzero values for pso and pys, as the following (posi-
tive definite) matrix shows:

1 3 29
R= (16)
2 3 1 4
9 4 5
3 4
0 2 ¢ 1

The last example illustrates some of considerations
needed for extending Theorem 1 to nonrecursive re-
gression, such as the one used in Markov fields over
undirected graphs. The fundamental basis for Markov
fields is given by the pair-wise Markov condition [Pear]
1988, Chapter 3; Lauritzen 1996], which consists of all
nonadjacent pairs, each separated by all other nodes



in the model. The local Markov condition (invoking
the neighbors of each node in the graph) is not a ba-
sis, because some neighborhood-based separations can
be derived from other such separations. If the graph is
decomposable, it can be oriented into a DAG (preserv-
ing I-mapness) and we can choose a basis by Theorem
1 along any such orientation. The interesting question
is how to deal with nondecomposable graphs when the
pair-wise basis is too wasteful. One possibility is to
make the graph decomposable by filling-in some edges,
orient the graph and find a basis according to Theorem
1, and finally, to handle the filled-in edges using a pair-
wise Markov condition on the corresponding clicks.

Azaria Paz (personal communication, 1998) has sug-
gested a promising approach to finding economic bases
for undirected graphs. It rests on the conjecture
that any given graph Gy can be triangulated into two
chordal graphs, G5 and (3, such that the edges added
in creating Gy are disjoint of those added in creat-
ing G3. The disjointness of the two sets of edges en-
sures that the graphoid closure of the independencies
entailed by G2 and G3 coincides with the set of inde-
pendencies entailed by G1. Therefore, the union of the
bases of G5 and (G3 is a basis of G1. But GG and G5 are
DAG equivalent. Thus, we can find economical bases
for the DAG equivalents of G2 and G5 using Theorem
1, and the union of those two bases is an economical
base for G1.

This and other extensions of Theorem 1 will be devel-
oped in a future paper.
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