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Abstract

The standard definition of causal Bayesian net-
works (CBNs) invokes a global condition according
to which the distribution resulting from any inter-
vention can be decomposed into a truncated prod-
uct dictated by its respective mutilated subgraph.
We provide alternative formulations which empha-
sizes local aspects of the causal process and can
serve therefore as more meaningful criterion for
testing coherence and network construction. We
first examine a definition based on “modularity”
and prove its equivalence to the global definition.
We then introduce two new definitions, the first in-
terprets the missing edges in the graph, and the
second interprets “zero direct effect” (i.e., ceteris
paribus). We show that these two formulations are
equivalent but carry different semantic content.

1 Introduction

Nowadays, graphical models are standard tools for encoding
distributional and causal information [Pearl, 1988; Spirtes et
al., 1993; Heckerman and Shachter, 1995; Lauritzen, 1999;
Pearl, 2000; Dawid, 2001; Koller and Friedman, 2009]. One
of the most popular representations is a causal Bayesian net-
work, namely, a directed acyclic graph (DAG) G which, in ad-
dition to the traditional conditional independencies also con-
veys causal information, and permits one to infer the effects
of interventions. Specifically, if an external intervention fixes
any set X of variables to some constant x, the DAG per-
mits us to infer the resulting post-intervention distribution,
denoted by Py (v), ! from the pre-intervention distribution
P(v).

The standard reading of post-interventional probabilities
invokes cutting off incoming arrows to the manipulated vari-
ables and leads to a “truncated product” formula [Pearl,
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![Pearl, 2000] used the notation P(v | set(t)), P(v | do(t)),
or P(v | t) for the post-intervention distribution, while [Lauritzen,
1999] used P(v || t).
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1993], also known as “manipulation theorem” [Spirtes et al.,
1993] and “G-computation formula” [Robins, 1986]. A lo-
cal characterization of CBNs invoking the notion of condi-
tional invariance was presented in [Pearl, 2000, p.24] and
will be shown here to imply (and be implied by) the trun-
cated product formula. This characterization requires the
network builder to judge whether the conditional probability
P(Y | PA,) for each parents-child family remains invari-
ant under interventions outside this family. [Tian and Pearl,
2002] provides another characterization with respect to three
norms of coherence called Effectiveness, Markov and Recur-
siveness, and showed their use in learning and identification
when the causal graph is not known in advance.

In this paper, we use the concepts of “conditional invari-
ance” and “interventional invariance” to formulate and com-
pare several definitions of CBNs. The first assures invariance
of conditional probabilities for each family, while the other
two assure the invariance of the distribution of each variable
under different interventions. We show that these three defi-
nitions are equivalent to the global one, and lead to the same
predictions under interventions.

The rest of the paper is organized as follows. In Section
2, we introduce the basic concepts, and present the standard
global and local definitions of CBNs together with discussion
of their features. In Section 3, we prove the equivalence be-
tween these two definitions. In Section 4, we introduce two
new definitions which explicitly interprets the missing links
in the graph as representing absence of causal influence. In
Section 5, we prove the equivalence between these definitions
and the previous ones. Finally, we provide concluding re-
marks in Section 6.

2 Causal Bayesian networks and interventions

A causal Bayesian network (also known as a Markovian
model) consists of two mathematical objects: (i) a DAG G,
called a causal graph, over a set V. = {V7,...,V,,} of ver-
tices, and (ii) a probability distribution P(v), over the set V
of discrete variables that correspond to the vertices in G. The
interpretation of such a graph has two components, proba-
bilistic and causal.”

2 A more refined interpretation, called functional, is also common
[Pearl, 2000], which, in addition to interventions, supports counter-
factual readings. The functional interpretation assumes determinis-



The probabilistic interpretation [Pearl, 1988] views G
as representing conditional independence restrictions on P:
each variable is independent of all its non-descendants given
its parents in the graph. This property is known as the
Markov condition and characterizes the Bayesian network
absent of any causal reading. These conditional indepen-
dence restrictions imply that the joint probability function
P(v) = P(vy, ..., v,) factorizes according to the product:

P(v)= HP(vi | pa;) €))

where pa; are (assignments of) the parents of variables V; in
G.

The causal interpretation views the arrows in G as repre-
senting potential causal influences between the correspond-
ing variables and, alternatively, the absence of arrows repre-
sents no direct causal influence between the corresponding
variables. In this interpretation, the factorization of eq. (1)
still holds, but the factors are further assumed to represent
autonomous data-generation processes, that is, each family
conditional probability P(v; | pa;) represents a stochastic
process by which the values of V; are assigned in response to
the values pa; (previously chosen for V;’s parents), and the
stochastic variation of this assignment is assumed indepen-
dent of the variations in all other assignments in the model.

Moreover, each assignment process remains invariant to
possible changes in the assignments processes that govern
other variables in the system. This invariance assumption is
known as modularity and it enables us to predict the effects
of interventions, whenever interventions are described as spe-
cific modification of some factors in the product of eq. (1).
The most elementary intervention considered is the atomic
one, where a set X of variables is fixed to some constant
X = x. The following definitions will facilitate subsequent
discussions.

Definition 1 (Interventional distributions). Let P(v) be a
probability distribution on a set V of variables, and let
Py (v) denote the distribution resulting from the interven-
tion do(X = x) that sets a subset X of variables to constant
X. Denote by P, the set of all interventional distributions
Py (v),X C V, including P(v), which represents no inter-
vention (i.e., X = (). Additionally, P, is such that for all
X C V, the following property holds:

i. [Effectiveness] Py(v;) = 1, for all V; € X whenever v; is
consistent with X = x;

Definition 2 (Conditional invariance). We say that Y is con-
ditional invariant to X given Z, denoted (Y ., X | Z)p,,
if intervening on X does not change the conditional distribu-
tionof Y givenZ =z, i.e, Vx,y,2,Px(y | z) = P(y | 2).

To capture the intuition behind atomic interventions,
[Pearl, 2000] proposed the following local definition of causal
Bayesian networks:

tic functional relationships between variables in the model, some of
which may be unobserved. Complete axiomatizations of determin-
istic counterfactual relations are given in [Galles and Pearl, 1998;
Halpern, 1998].

Definition 3 (Causal Bayesian network [Pearl, 2000, p.24]).
A DAG G is said to be locally compatible with a set of inter-
ventional distributions P if and only if the following condi-
tions hold for every Py € P,.:

i. [Markov] Px(v) is Markov relative to G;

ii. [Modularity] (V; LL.; X | PA;)p,, forall V; ¢ X when-
ever pay is consistent with X = x. 3

We shall show (Sec. 3) that modularity permits us to an-
swer queries about the effect of interventions, or causal ef-
fects. A causal effect of variable X on variable Y written
P, (y), stands for the probability that variable Y attains value
y if we enforce uniformly over the population the constraint
X = z. The standard definition of causal Bayesian networks
is based on a global compatibility condition, which makes
explicit the joint post-intervention distribution under any ar-
bitrary intervention.

Definition 4 (Global causal Bayesian network [Pearl, 2000]).
A DAG G is said to be globally compatible with a set of in-
terventional distributions P, if and only if the distribution
Py (v) resulting from the intervention do(X = x) is given by
the following expression:

v consistent with x.

— H{i|Vi¢X} P(v; | pay)
Pu(v) = { 0 otherwise.

2

Equation (2) is also known as the truncated factorization
product of eq. (1), with factors corresponding to the manipu-
lated variables removed. The truncated factorization follows
from Definition 3 because, assuming modularity, the post-
intervention probabilities P(v; | pa;) corresponding to vari-
ables in X are either 1 or 0, while those corresponding to
unmanipulated variables remain unaltered.

The two definitions emphasize different aspects of the
causal model; Definition 3 ensures that each conditional prob-
ability P(v; | pa;) (locally) remains invariant under interven-
tions that do not include directly V;, while Definition 4 en-
sures that each manipulated variable is not influenced by its
previous parents (before the manipulation), and every other
variable is governed by its pre-interventional process. Be-
cause the latter invokes theoretical conditions on the data-
generating process, it is not directly testable, and the ques-
tion whether a given implemented intervention conforms to
an investigator’s intention (e.g., no side effects) is discernible
only through the testable properties of the truncated product
formula (2). Definition 3 provides in essence a series of lo-
cal tests for Equation (2), and the equivalence between the
two (Theorem 1, below) ensures that all empirically testable
properties of (2) are covered by the local tests provided by
Definition 3.

3Explicitly, modularity states: P(v;|pas, do(s)) = P(v;|pa;)
for any set S of variables disjoint of {V;, PA;}.



3 The equivalence between the local and
global definitions

We prove next that the local and global definitions of
causal Bayesian networks are equivalent. To the best of our
knowledge, the proof of equivalence has not been published
before.

Theorem 1 (Equivalence between local and global compati-
bility). Let G be a DAG and P a set of interventional distri-
butions, the following statements are equivalent:

i. G is locally compatible with P,

ii. G is globally compatible with P,

Proof. (Definition 3 = Definition 4)

Given an intervention do(X = x), X C V, assume that
conditions 3:(i-ii) are satisfied. For any arbitrary instantia-
tion v of variables V, consistent with X = x, we can express
Py(v) as

17w | pay)
II Pxtwilpa) [ Pulvi]pay)

{ilv;eX} {ilvigX}
effectiveness H P, (v_ ‘ .
= x\Y2 pal)
{i|vigX}
def 3:(id) H P(v; | paj) 3)
{ilvigX}

which is the truncated product as desired.
(Definition 4 = Definition 3)

We assume that the truncated factorization holds, i.e., the
distribution Py (v) resulting from any intervention do(X =
x) can be computed as eq. (2).

To prove effectiveness, consider an intervention do(X =
x), and let v; € X. Let Dom(v;) = {v;1, Vi2, ..., Vim } be the
domain of variable V;, with only one of those values consis-
tent with X = x. Since Px(v) is a probability distribution,
we must have > Px(Vi = v;;) = 1. According to eq. (2),
all terms not consistent with X = x have probability zero,
and thus we obtain Py (v;) = 1, v; consistent with X = x.

To show Definition 3:(ii), we consider an ordering 7 :
(v1,...,vy,) of the variables, consistent with the graph G
induced by the truncated factorization with no intervention
P(v) = [[,;P(v; | paj). Now, given an intervention
do(X = x)

Px (vi 5 pai)
Px(pa;)

P(vi | pai)

Zvj ¢{Vi,PA;} Pe(v)
Zngz{PAi} Px(v)
>0, ¢{vi.Payx} Lo, ex P(vk | Pax)
>0, ¢ (PALX) o gx P(0r | Pai)
P(v; | pai) x
Zvj%{vi,PA;,X} Hukgx,k;eip(vk | pax)
2 v, ¢ (PALX} o gx P0r | Pai)

marginal.

eq.(2)

4)

The last step is due to the fact that variables in {V;, PA;} do
not appear in the summations in the numerator. Rewriting the
numerator, breaking it in relation to variables before and after

v;, We obtain
> 11 Pk [ pas) =

vj ¢{‘/’L 7PAi’X} vk’?;ix
2

> I Pw I pa) > ] P(ox | paw)

vj E{PA; X} v EX v EX v X
j<i k<i g>i k>i

&)
Note that ), ¢x [[.,¢x P(vx | pax) = 1 because all V; >
g>i k>i
V; appear in the summation. Thus, we obtain

S I Pol paw) =

vj ¢{V;7PAi,X} ’Uk¢X

S T Plor | pa)

vjé{PAi,X} v EX
7<i k<i

(6)

Similarly for the denominator,

> II Pl pa) =

v; ¢{PA;, X} v ¢X

S T Plor | paw)

v ¢ {PA;, X} vy ¢X
j<i k<i

(7

Observe that eqs. (6) and (7) are identical, equation (4) re-
duces to Px(v; | pai) = P(v; | pa;) as desired.

To show Definition 3:(i), we first use the truncated factor-
ization

eq.(2)
Pv) Y I Pwilpa)
{1,v:¢X}
def.3:(i) H Py (v; | pai)
{i,0:¢X}

effectiveness
R T Pa(vi | pay) ®)

2

Finally, def. 3:(i) follows from the definition of Markov com-
patibility (definition 1.2.2 in [Pearl, 2000]). ]



4 Alternative characterization of Causal
Bayesian Networks

We state next a local definition of CBNs which focuses on the
absence of edges in the causal graph, i.e., the missing-links
representing absence of causal influence.

Definition 5 (Missing-link causal Bayesian network). A DAG
G is said to be missing-link compatible with a set of interven-
tional distributions P, if and only if the following conditions
hold:

i. [Markov] VX C 'V, Px(v) is Markov relative to G;

ii. [Missing-link] VX C V,Y € V,S CV, Pxspa,(y) =
Ps pa, (y) whenever there is no arrow from X to Y in G,
pay is consistent with {X = x,S = s} and X, {Y'}, S
are disjoint.

iii. [Parents do/see] VY € V,X C V, Pxpa,(y) =
Px(y | pay) whenever pay is consistent with X = x
and X, {Y '} are disjoint.

Condition (ii) requires that when we set X to some value
while keeping the variables S U PA, constant, the marginal
distribution of Y remains unaltered, independent of the value
of X, whenever there is no edge between X and Y, i.e., an in-
tervention on X does not change Y ’s distribution while hold-
ing constant its parents. In addition to the missing-link condi-
tion, 5:(iii) describes the relationship inside each family, i.e.,
the effect on Y should be the same whether observing (see-
ing) or intervening (doing) on its parents PA.

Note that the missing-link condition is not sufficient on
its own to characterize causal Bayesian networks — condition
5:(iii) is also necessary when there is a link between any two
variables. To illustrate, consider a DAG G with only two bi-
nary variables A and B, and an edge from A to B. Without
condition 5:(iii), the interventional distribution P, (b) is un-
constrained, which allows P,(b) # P(b | a). However, Defi-
nition 3 implies P,(b) = P(b | a) since A is the only parent
of B. Condition 5:(iii) ensures this equality.

To facilitate comparison to previous definitions, we next
define the notion of interventional invariance:

Definition 6 (Interventional invariance). We say that Y is in-
terventional invariant (II) to X given Z, denoted (Y 11 ;X |
Z)p,, if intervening on X does not change the interventional
distribution of Y given do(Z = z), i.e., Vx,y,2, Px ,(y) =
Pa(y)-

Note that definitions 2 and 6 represent different types of
causal invariance, the former claims invariance given an ob-
servation, while the latter claims invariance given an inter-
vention. Interpreting CBNs in these terms, Definition 3 as-
sumes modularity of each family in terms of conditional in-
variance (i.e., (Y 1L, X | PAy)p,,VX), while Definition
5 expresses the absence of causal effect in terms of interven-
tional invariance (i.e., (Y 1, X | PAy,S)p., VS, X).

We believe that Definition 5 is more intuitive because it re-
lies exclusively on causal relationships in terms of which the
bulk of scientific knowledge is encoded. We further discuss
this intuition in the next section.

Note that conditional independence claims encoded by the
CBNs are of the form (Y 1L NDy | PAy)p,, and the I/

claims are of the form (Y 1L;; X | PAy,S)p,, VX,S. In
both cases, PA, is required to separate Y from other vari-
ables. In the observational case Y is separated from its non-
descendants, while in the experimental one it is separated
from all other variables. This is so because in the experi-
mental case, an intervention on a descendant of a variable Z
cannot influence Z (as is easily shown by d-separation in the
mutilated graph).

A characterization based on Zero Direct Effect

The missing-link definition requires advance knowledge
about parent sets, which is not necessarily available in the
network construction. In this section, we extend the previous
definition and propose a new characterization based on the
notion of Zero direct effect, which is more aligned with our
intuition about causal relationships, especially these emanat-
ing from typical experiments.

Definition 7 (Zero direct effect). Let X C V, Y € V and
Sxy =V — {X,Y}. * We say that X has zero direct effect
onY, denoted ZDE(X,Y), if

(Y 1 X | Sxy)

Now, we introduce the definition of CBNs motivated by
this notion:

Definition 8 (Zero direct effect (ZDE) causal Bayesian net-
work). A DAG G is ZDE compatible with a set of interven-
tional distributions P . if the following conditions hold:

i. [Markov] VX C V, Py(v) is Markov relative to G;

ii. [ZDE]VX,Y € V, ZDE(X,Y) whenever there is no
arrow from X to'Y in G;

iii. [Additivity] VX C V,Z)Y € V, ZDE(X)Y)
and ZDE(Z,Y) = ZDE(XU{Z},Y);

iv. [Parents do/see] VY € V,X C V, Pipa,(y) =
Pi(y | pay) whenever pay is consistent with X = x
and X, {Y'} are disjoint.

The main feature of Definition 8 is condition (ii), which
implies that varying X from x to ’ while keeping all other
variables constant does not change Y’s distribution — this cor-
responds to an ideal experiment in which all variables are kept
constant and the scientist “wriggles” one variable (or set) at
a time, and contemplates how the target variable reacts (i.e.,
ceteris paribus).

This condition is supplemented by condition 8:(iii), which
has also an intuitive appeal: if experiments show that separate
interventions on X and Z have no direct effect on Y, then
a joint intervention on X and Z should also have no direct
effect on Y. Conditions (i) and (iv) are the same as in the
missing-link definition.

One distinct feature of this new definition emerges when
we test whether a given pair < G, P, > is compatible. First,
the modularity condition of Definition 3 requires that each
family is invariant to interventions on all subsets of elements
“outside” the family, which is combinatorially explosive. In
contrast, condition (ii) of Definition 8 involves singleton pair-
wise experiments which are easier to envision and evaluate.

“We use {A, B} to denote the union of A and B.



Put another way, when the ZDE condition does not hold, it
implies the existence of an edge between the respective pair
of nodes thus providing fewer and easier experiments in test-
ing the structure of the graph. Further, one should test the
Markov compatibility of P and the new induced graph G.

We now show that all three local definitions of causal
Bayesian networks stated so far are equivalent.

Theorem 2. Let G be a DAG and P a set of interventional
distributions, the following statements are equivalent:
i. G is locally compatible with P,
ii. G is missing-link compatible with P,
iii. G is ZDE compatible with P,

Note that the notion of “parents set”, though less attached
to modularity and invariance, is still invoked by the last
two compatibility conditions. We believe therefore that it

is an essential conceptual element in the definition of causal
Bayesian networks.

5 Equivalence between the local definitions of
causal Bayesian network

Definition 9 (Strong Markov Condition). Each variable is in-

terventionally independent of every other variable after fixing

its parents. That is, forallY € Vand X C'V — {Y,PAvy}
we have

Py pa, () = Ppa, (v), for all x,y, pay ©
5.1 [Zde-CBN] = [local-CBN]

In this subsection, we assume that the four conditions in the
definition of the Zero direct effect causal Bayesian network
are valid for a given graph G and set P.,.

The first result simply extends the Zero direct effect seman-
tics to subset of variables:

Lemma 1. Zde(W,Y) holds for every W C V —
{Y,PAvy}.

Proof. Note that W does not contain parents of Y. Then,
[Zde] gives that, for every U in W, we have Zde(U,Y).
But then, it follows directly by [Additivity], that Zde(W,Y)
holds. O

The next Lemma shows that the strong Markov condition
is also valid for G and P..
Lemma 2. ForallY € Vand X C V — {Y,PAvy}, the
relation (Y 1L,; X | PAy) holds.

Proof. Let Ty = V — {Y,PAv}, and note that Sy, =
PA~y. Since T; does not have parents of Y, by Lemma 1,
we have Zde(T1,Y), that is

Ptl,Sytl (y) = PSytl (y) = }Dpay (y)
Now, let T = V — {Y,X,PAvy}, and note that Sy, =
{X,PAv}. Since T does not have parents of Y, by Lemma
1, we have Zde(T2,Y), that is

Pt275yt2 (y) = Psytz (y) = Px,pay (v)
Since (T1 U Sy, ) = (T2 U SyT,), we obtain

Px,pay (y) = Ppay (y)

Lemma 3. The condition of [Modularity] is valid for G and
P..

Proof. Fix avariableY and X C V —{Y'}. We need to show
that

Px(y | pay) = P(y | pay)

Applying the condition [Parents do/see] to both sides in the
equation above, we obtain

Py pay (y) = Ppay, (y)

and we immediately recognize here a claim of the strong
Markov condition. O

Finally, the observation that the condition [Markov] is
present in both definitions, we complete the proof that G is
a local causal Bayesian network for P..

5.2 [local-CBN] = [Zde-CBN]

In this subsection, we assume that the two conditions in the
definition of the local causal Bayesian network are valid for a
given graph G and set P...

Lemmad. ForallY € Vand X C V—{Y,PAvy} we have

Py pay (Pay | y) =1

whenever Py pa, (y) > 0, and pay is compatible with x.

Proof. This is an immediate consequence of the property of
[Effectiveness], in the definition of P..

Lemma 5. The condition [Parents do/see] is valid for G and
P..

Proof. Fix a variable X C 'V and consider an arbitrary in-
stantiation v of variables V, and pa, consistent with x.

Consider the intervention do(X = x), and given the con-
dition [Modularity], P«(y | pay) = P(y | pay), Y ¢ X.
Now consider the intervention do(X = x,PAy = pay),
and again by the condition [Modularity] Py pa, (v | Pay) =
P(y | pay). The rh.s. coincide, therefore

Px(y | pay) = Py pay (v | Pay)
Bayes:thm. Px,pay (pay ‘ y)Px,pay (y)
Px.pa, (Pay)

effectiveness

Px,pay (pay | y)Px,pay (v)
(10)

We consider two cases. If Pypa (y) > 0, by lemma 4
Py pa, (Pay | y) = 1, and then substituting back in eq. (10)
we obtain Py(y | pay) = Pxpa, (¥y). If Pxpa,(y) = 0,
substituting back in eq. (10) we obtain Px(y | pay) =
Py pa, (pay | y) *x0 = 0, and then Px(y | pay) =
Px,pay y). O

Lemma 6. The condition [Zde] is valid for G and P.,.



Proof. Fix Y, X € V such that there is no arrow pointing
from X to Y. Let Sxy =V — {X, Y}. We want to show

PI-,Sxy (y) = PSxy (y)a fOI‘ all l’, ya sxy

Note that PA, C Sy, and then by the [Parent do/see] con-
dition we have to show

Pm,s;(y (y | pay) = PS;y (y | pay)

where S}, = Sxy — {PAy}.

The condition [Modularity] implies that Px,s;(y (y |
pay) = P(y | pay). Again by [Modularity], we obtain
P(y | pay) = Py, y(y | pay). Applying [Parents do/see],
[Zde] follows. O

Lemma 7. The condition [Additivity] is valid for G and P.,.

Proof. Fix X C Vand Z,Y € V. Let Sypy = V —

{X,Y, Z}. Assume Zde(X,Y') and Zde(Z,Y). For the sake

of contradiction, suppose that Zde(X U {Z},Y) is false.
We can rewrite it based on the law of total probability,

Z P{X,Z},szy (y | pay)lD{x,z},sxzy (pay) 7é

pay

> P, (y| pay)Ps,,, (Pay)

Pay

Notice that there is only one configuration of pa, consistent
with sy in both sides because PA, C S, and [Effective-
ness]. Then, this equation reduces to

P{x,z},sxzy (y | pay) 7é
Ps.., (y | Pay)

We reach a contradiction given [Modularity]. O

The proof for the Missing-link CBN is analogous.

6 Conclusions

We first proved the equivalence between two characteriza-
tions of Causal Bayesian Networks, one local, based on mod-
ularity, and the other global, based on the truncated product
formula. We then introduced two alternative characteriza-
tions of CBNs, proved their equivalence with the previous
ones, and showed that some of their features make the tasks
of empirically testing the network structure, as well as judg-
mentally assessing its plausibility more manageable.
Another way to look at the results of our analysis is in terms
of the information content of CBNs, that is, what constraints
a given CBN imposes on both observational and experimen-
tal findings. For a probabilistic Bayes network the answer is
simple and is given by the set of conditional independencies
that are imposed by the d-separation criterion. For a CBN,
the truncated product formula (2) imposes conditional inde-
pendencies on any interventional distribution P, (v). But this
does not sum up the entire information content of a CBN.
Equation (2) further tells us that the relationship between any
two interventional distributions, say P, (v) and P,/ (v), is not
entirely arbitrary; the two distributions constrain each other
in various ways. For example, the conditional distributions

P, (v;|pa;) and P, (v;|pa;) must be the same for any unma-
nipulated family. Or, as another example, for any CBN we
have the inequality: P, (y) > P(z,y) [Tian et al., 2006].

A natural question to ask is whether there exists a repre-
sentation that encodes all constraints of a given type. The
modularity property of Definition 2 constitutes such a repre-
sentation, and so do the missing-link and the ZDE definitions.
Each encodes constraints of a given type and our equivalence
theorems imply that all constraints encoded by one repre-
sentation can be reconstructed from the other representation
without loss of information.

References

A. P. Dawid. Influence diagrams for causal modelling and
inference. International Statistical Review, 70(2):161-189,
2001.

D. Galles and J. Pearl. An axiomatic characterization of
causal counterfactuals. Foundation of Science, 3(1):151-
182, 1998.

J.Y. Halpern. Axiomatizing causal reasoning. In G.F. Cooper
and S. Moral, editors, Uncertainty in Artificial Intelligence,
pages 202-210. Morgan Kaufmann, San Francisco, CA,
1998. Also, Journal of Artificial Intelligence Research
12:3, 17-37, 2000.

D. Heckerman and R. Shachter. Decision-theoretic founda-
tions for causal reasoning. Journal of Artificial Intelligence
Research, 3:405-430, 1995.

D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

S. L. Lauritzen. Causal inference from graphical models. In
Complex Stochastic Systems, pages 63—107. Chapman and
Hall/CRC Press, 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann, San Mateo, CA, 1988.

J. Pearl. Belief networks revisited. Artificial Intelligence,
59:49-56, 1993.

J. Pearl. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, New York, 2000. Second ed.,
2009.

J.M. Robins. A new approach to causal inference in mortality
studies with a sustained exposure period — applications to
control of the healthy workers survivor effect. Mathemati-
cal Modeling, 7:1393-1512, 1986.

P. Spirtes, C.N. Glymour, and R. Scheines. Causation, Pre-
diction, and Search. Springer-Verlag, New York, 1993.

J. Tian and J. Pearl. A new characterization of the experimen-
tal implications of causal Bayesian networks. In Proceed-
ings of the Eighteenth National Conference on Artificial
Intelligence, pages 574-579. AAAI Press/The MIT Press,
Menlo Park, CA, 2002.

J. Tian, C. Kang, and J. Pearl. A characterization of inter-
ventional distributions in semi-Markovian causal models.
In Proceedings of the Twenty-First National Conference
on Artificial Intelligence, pages 1239—-1244. AAAI Press,
Menlo Park, CA, 2006.





